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Introduction to Data Engineering on Databricks

A recent MIT Tech Review Report shows that 88% of surveyed organizations are
either investing in, adopting or experimenting with generative Al (GenAl) and 71%
intend to build their own GenAl models. This increased interest in Al is fueling
major investments as Al becomes a differentiating competitive advantage in
every industry. As more organizations work to leverage their proprietary data for
this purpose, many encounter the same hard truth:

The best GenAl models in the world will not succeed without good data.

This reality emphasizes the importance of building reliable data pipelines that
can ingest or stream vast amounts of data efficiently and ensure high data
quality. A unified platform and good data engineering are essential components
of success in every data and Al initiative, especially in the era of GenAl.

Using practical guidance, useful patterns, best practices and real-world
examples, this book will provide you with an understanding of how the
Databricks Data Intelligence Platform helps data engineers meet the
challenges of this new era.

What is data engineering?

Data engineering is the practice of taking raw data from a data source and
processing it so it's stored and organized for a downstream use case such
as data analytics, business intelligence (Bl) or machine learning (ML) model
training. In other wordes, it's the process of preparing data so value can be
extracted from it.
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A useful way of thinking about data engineering is by using the following
framework, which includes three main parts:

1. Ingest
Data ingestion is the process of bringing data from one or more data sources
into a data platform. These data sources can be files stored on-premises or on
cloud storage services, databases, applications and, increasingly, data streams

that produce real-time events.

2. Transform
Data transformation takes raw ingested data and uses a series of steps
(referred to as “transformations”) to filter, standardize, clean and finally
aggregate it so it's stored in a usable way. A popular pattern is the medallion
architecture, which defines three stages in the process — Bronze, Silver
and Gold.

3. Orchestrate
Data orchestration refers to the way a data pipeline that performs ingestion
and transformation is scheduled and monitored as well as the control of the

various pipeline steps and handling failures (e.g., by executing a retry run).
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https://www.databricks.com/resources/analyst-papers/laying-foundation-data-and-ai-led-growth
https://www.databricks.com/product/data-intelligence-platform
https://www.databricks.com/solutions/data-engineering
https://www.databricks.com/glossary/medallion-architecture
https://www.databricks.com/glossary/medallion-architecture
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Challenges of data engineering in the Al era = Governance and security: Data governance is becoming a key challenge

. . . . . . for organizations that find their data spread across multiple systems,
As previously mentioned, data engineering is key to ensuring reliable data for

e . . o o with increasingly larger numbers of internal teams looking to access and
Al initiatives. Data engineers who build and maintain ETL pipelines and the creasingly larger numbers o erna g

data infrastructure that underpins analytics and Al workloads face specific utilize it for different purposes. Securing and governing data is also an

challenges in this fast-moving landscape. important regulatory concern many organizations face, especially in highly
regulated industries.

" Disparate data sources challenge most organizations: ISG predicts These challenges stress the importance of choosing the right data platform for

that by 2026, 8 in 10 enterprises will have their data spread across navigating new waters in the age of Al. But a data platform in this new age can
multiple cloud providers and on-premises data centers that span multiple also go beyond addressing just the challenges of building Al solutions. The right
locations. This decentralization creates a dependency on specialized, platform can improve the experience and productivity of data practitioners,
siloed teams, inefficient pipelines and development with high costs, and including data engineers, by infusing intelligence and using Al to assist with
slow time to value, which limits the usage of data and blocks innovation. daily engineering tasks.

= Handling real-time data: From mobile applications to sensor data on In other words, the new data platform is a data intelligence platform.

factory floors, more and more data is created and streamed in real
time and requires low-latency processing so it can be used in real-time

decision-making.

= Scaling data pipelines reliably: With data coming in large quantities
and often in real time, scaling the compute infrastructure that runs
data pipelines is challenging, especially when trying to keep costs low
and performance high. Running data pipelines reliably, monitoring data
pipelines and troubleshooting when failures occur are some of the most
important responsibilities of data engineers.

= Data quality: “Garbage in, garbage out.” High data quality is essential to
training high-quality models and gaining actionable insights from data.
Ensuring data quality is a key challenge for data engineers.

< databricks
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The Databaricks Data Intelligence Platform

Databricks’ mission is to democratize data and Al, allowing organizations
to use their unique data to build or fine-tune their own machine learning
and generative Al models so they can produce new insights that lead to
business innovation.

The Databricks Data Intelligence Platform is built on a lakehouse architecture
to provide an open, unified foundation for all data and governance, and is
powered by a Data Intelligence Engine that understands the uniqueness of your
data. With these capabilities at its foundation, the Data Intelligence Platform
lets Databricks customers run a variety of workloads, from business intelligence
and data warehousing to Al and data science.

To get a better understanding of the Databricks Platform, here’s an overview of

the different parts of the architecture as it relates to data engineering.

The Databricks Data Intelligence Platform enables you to execute all your data
and Al initiatives. As a 100% serverless platform, it provides you with built-in
features such as disaster recovery, cost controls and enterprise security. Key
components feature Mosaic Al with end-to-end Al for both generative and
classical Al; Databricks SQL, the most performant data warehouse in the cloud;
efficient data ingestion and reliable transformation tools such as Workflows and
Delta Live Tables (DLT) to ensure you can manage all your data for any workload;
and Al/BI that integrates deeply with Databricks SQL to easily extend business

intelligence across your business.
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https://www.databricks.com/product/data-lakehouse
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Data ingestion with Databricks LakeFlow

Databricks enables organizations to efficiently move data from various

systems into a single, open and unified lakehouse architecture. Databricks
LakeFlow Connect provides native data ingestion connectors for popular SaaS
applications, databases and file sources that any practitioner can use to build
incremental data pipelines at scale. These built-in connectors provide efficient
end-to-end incremental ingestion, easy setup with a simple Ul or APl access, and
governance via Unity Catalog — all powered by the Data Intelligence Platform.
LakeFlow Connect is part of LakeFlow — Databricks’ new unified data engineering
solution spanning ingestion, transformation and orchestration — and is the first of
these three components to roll out, compatible with existing tooling. In addition
to LakeFlow Connect, Databricks Auto Loader, a connector for cloud object

storage, is compatible with Structured Streaming and Delta Live Tables.

Native ingestion for the Data Intelligence Platform

Data Sources
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@ Data science

Streaming analytics
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1 I | Q@ Bl & reporting
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Enterprise application

A Delta Lake for open and reliable data storage
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Data reliability and performance with Delta Lake

To bring openness, reliability and lifecycle management to data lakes, the
Databricks lakehouse architecture is built on the foundation of Delta Lake, an
open source, highly performant storage format that solves challenges around
unstructured/structured data ingestion, the application of data quality, difficulties
with deleting data for compliance or issues with modifying data for data capture.
Delta Lake UniForm users can now read Delta tables with Hudi and Apache
Iceberg™ clients, keeping them in control of their data. In addition, Delta Sharing

enables easy and secure sharing of datasets inside and outside the organization.

Unified governance with Unity Catalog

With Unity Catalog, data engineering and governance teams benefit from an
enterprisewide data catalog with a single interface to manage permissions,
centralize auditing, automatically track data lineage down to the column level

and share data across platforms, clouds and regions.



https://www.databricks.com/product/delta-lake-on-databricks
https://www.databricks.com/product/delta-lake-on-databricks
https://www.databricks.com/product/delta-sharing
https://www.databricks.com/product/unity-catalog
https://www.databricks.com/product/data-ingestion
https://www.databricks.com/blog/introducing-databricks-lakeflow
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Accelerate productivity through Data Intelligence

Databricks brings Al to your data to help you bring Al to the world, and at

the heart of the Databricks Platform is Data Intelligence. Databricks helps

you succeed with Al with your own data to democratize insights and drive
down costs. Databricks leverages generative Al with Data Intelligence to

power all parts of the platform. Using signals across your entire Databricks
environment, including Unity Catalog, dashboards, notebooks, data pipelines
and documentation, the Data Intelligence Engine creates highly specialized and
accurate generative Al models that understand your data, your usage patterns

and your business terminology.

= & = ¥
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Interfaces and Discovery Governance and Maintenance
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Data Intelligence
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Reliable data pipelines and real-time stream processing with Delta Live Tables
Delta Live Tables (DLT) is a declarative ETL framework that helps data teams
simplify and make ETL cost-effective in streaming and batch. Simply define

the transformations you want to perform on your data and let DLT pipelines
automatically handle task orchestration, cluster management, monitoring, data
quality and error management. Engineers can treat their data as code and

apply modern software engineering best practices like testing, error handling,
monitoring and documentation to deploy reliable pipelines at scale. DLT fully
supports both Python and SQL and is tailored to work with both streaming and

batch workloads.

Unified data orchestration with Databricks Workflows

Databricks Workflows offers a simple, reliable orchestration solution for data
and Al on the Data Intelligence Platform. Databricks Workflows lets you define
multistep workflows to implement ETL pipelines, ML training workflows and
more. It offers enhanced control flow capabilities and supports different task
types and workflow triggering options. As the platform native orchestrator,
Databricks Workflows also provides advanced observability to monitor and
visualize workflow execution along with alerting capabilities for when issues arise.

Databricks Worklfows offers serverless compute options so you can leverage

smart scaling and efficient task execution.



https://www.databricks.com/product/data-intelligence-platform
https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/workflows
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A rich ecosystem of data solutions

The Data Intelligence Platform is built on open source technologies and uses A large collection of technology partners makes it easy and simple to integrate

the technologies you rely on when migrating to Databricks — and you are not
locked into a closed data technology stack.

open standards so leading data solutions can be leveraged with anything you
build on the lakehouse.
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| The Data Intelligence Platform integrates with a large collection of technologies
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Why data engineers choose the Data Intelligence
Platform

So how does the Data Intelligence Platform help with each of the data

engineering challenges discussed earlier?

= Efficient ingestion, wide range of data connectors: Databricks allows
you to efficiently ingest data, only bringing in new data or table updates.
With a growing set of native connectors for popular data sources, as well
as a broad network of data ingestion partners, you can easily move data
from siloed systems into your data platform. Ingesting and storing your
data in Delta Lake while leveraging the reliability and scalability of the Data
Intelligence Platform is the first step in extracting value from your data and

accelerating innovation.
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= Real-time data stream processing: The Data Intelligence Platform

simplifies development and operations by automating the production
aspects associated with building and maintaining real-time data
workloads. Delta Live Tables provides a declarative way to define
streaming ETL pipelines, and Spark Structured Streaming helps build
real-time applications for real-time decision-making (see diagram

on next page).
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= Reliable data pipelines at scale: Both Delta Live Tables and Databricks
Workflows use smart autoscaling and auto-optimized resource
management to handle high-scaled workloads. With lakehouse
architecture, the high scalability of data lakes is combined with the high
reliability of data warehouses, thanks to Delta Lake — the storage format
that sits at the foundation of the lakehouse.

= Data quality: High reliability — starting at the storage level with Delta
Lake and coupled with data quality—specific features offered by Delta
Live Tables — ensures high data quality. These features include setting

data “expectations” to handle corrupt or missing data as well as automatic

retries. In addition, both Databricks Workflows and Delta Live Tables

provide full observability to data engineers, making issue resolution faster

and easier.

= Unified governance with secure data sharing: Unity Catalog provides
a single governance model for the entire platform so every dataset and
pipeline are governed in a consistent way. Datasets are discoverable

and can be securely shared with internal or external teams using Delta

Sharing. In addition, because Unity Catalog is a cross-platform governance

solution, it provides valuable lineage information, so it's easy to have a full

understanding of how each dataset and table is used downstream and

where it originates upstream.
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In addition, data engineers using the Data Intelligence Platform benefit

from cutting-edge innovations in the form of GenAl-infused intelligence:

= Al-powered productivity: Specifically useful for data engineers, the
Databricks Assistant is a context-aware Al assistant that offers a
conversational APl to query data, generate code, explain code queries and

even fix issues.

. Assistant C X @ Newauery +
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o
@ g g
~ » (1000} | v hive_metast... defa.. v : Bl load test Serverless M~ Save*
@ Assistant . : - : ©
< EC
The Assistant can accelerate your work by diagnosing %EL‘—LT fare_amount
errors, suggesting code or gueries, and answering FROM main.nyctaxi.trips
: : : ORDER BY fare_amount DESC
questions. Mistakes are possible, so be sure to check e TLR
facts and share your feedback. (More info) =S
jim.allenwallace@databricks.com
B saL Editer . .
write a query to return the 10 most expensive fares from
main.nyctaxi.trips
Results + Preview
& assistant # | 1% fare_amount
sql 1 275.00
2 260.00
SELECT fare_amount
FROM main.nyctaxi.trips 3 188.00
ORDER BY fare_amount DESC
LIMIT 18; 4 130.00
This query selects the fare_amount column from the 5 I 115.00
main.nyctaxi.trips table, orders the results in
descending order based on fare_amount , and returns— 6 I 105.00
only the top 10 rows. 7 I 105.00
- : e nn
|| e »E" 6l Biv s’ e,



https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/workflows
https://www.databricks.com/product/workflows
https://www.databricks.com/product/delta-lake-on-databricks
https://www.databricks.com/product/delta-lake-on-databricks
https://www.databricks.com/product/unity-catalog
https://www.databricks.com/product/databricks-assistant
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Conclusion

As organizations strive to innovate with Al, data engineering is a focal point for
success by delivering reliable, real-time data pipelines that make Al possible.
With the Databricks Platform, built on a lakehouse architecture and powered by
Data Intelligence, data engineers are set up for success in dealing with the critical
challenges posed in the modern data landscape. By leaning on the advanced
capabilities of the Data Intelligence Platform, data engineers don't need to spend
as much time managing complex pipelines or dealing with reliability, scalability
and data quality issues. Instead, they can focus on innovation and bringing more

value to the organization.
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FOLLOW PROVEN BEST PRACTICES

In the next section, we describe best practices for data engineering and
end-to-end use cases drawn from real-world examples. From data ingestion
and real-time processing to orchestration and data federation, you'll learn how
to apply proven patterns and make the best use of the different capabilities

of the Data Intelligence Platform.

As you explore the rest of this guide, you can find datasets and code samples in
the various Databricks Solution Accelerators, so you can get your hands dirty

and start building on the Data Intelligence Platform.



https://www.databricks.com/solutions/accelerators
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Guidance and Best Practices
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Databricks Assistant Tips and Tricks for

Data Engineers
by Jackie Zhang, Rafi Kurlansik and Richard Tomlinson

The generative Al revolution is transforming the way that teams work, and
Databricks Assistant leverages the best of these advancements. It allows you
to query data through a conversational interface, making you more productive
inside your Databricks Workspace. The Assistant is powered by DatabricksIQ,
the Data Intelligence Engine for Databricks, helping to ensure your data is
secured and responses are accurate and tailored to the specifics of your
enterprise. Databricks Assistant lets you describe your task in natural language
to generate, optimize, or debug complex code without interrupting your

developer experience.

In this chapter we'll discuss how to get the most out of your Databricks Assistant
and focus on how the Assistant can improve the life of Data Engineers by
eliminating tedium, increasing productivity and immersion, and accelerating
time to value. We will follow up with a series of posts focused on different data
practitioner personas, so stay tuned for upcoming entries focused on data

scientists, SQL analysts, and more.

INGESTION

When working with Databricks as a data engineer, ingesting data into Delta
Lake tables is often the first step. Let's take a look at two examples of how the
Assistant helps load data, one from APIs, and one from files in cloud storage.
For each, we will share the prompt and results. As mentioned in the 5 tips blog,
being specific in a prompt gives the best results, a technique consistently used

in this article.
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To get data from the datausa.io APl and load it into a Delta Lake table with
Python, we used the following prompt:

Help me ingest data from this APl into a Delta Lake table:

https://datausa.io/api/data?drilldowns=Nation&measures=Population

Make sure to use PySpark, and be concise! If the Spark DataFrame columns have

any spaces in them, make sure to remove them from the Spark DF.

Assistant (SR
i . 3 P iR ey s—t3 3 ||
b inest data from this APl into a Delta Lake table: Jie [anifgata? . ! [m 9800 en k] Helo rf
bwns=Nation&measures=Population import requests arill
b2 sure to use PySpark, and be concise! If the Spark DataFrame columns have any spaces in faFetchatbeldatanfronitheyARE Mal
|, make sure to remove them from the Spark DF. s P B - ~ = the
api_url = "https://datausa. io/api/data?drilldowns=Nat ion&measures=Po
response requests.get(api_url)
L ant oo data = response. json() Ass
linly! Here's a concise way to ingest data from the given API into a Delta Lake table using # Create a Spark DataFrase from the APL response data se;
k:
" df = spark.createDataFrame(data["data"]) v
. »
= # Remove spaces from column names in the DataFrame
mport requests df = df.toDF((col.replace(” ", "") for col in df.columns))
k Fetch th # Specify the Delta Lake table path
hpi_url = api/data?drilldowns=Nation& table_path = "/Volumes/rkurlansik/default _ nce/usa_dat;
o
fesponse = requests.get(api_url) # Write the DataFrame as a Delta Lake table
fata = response. json() df.write. format("delta") .mode("overwrite") . save( table_path)
f Create a Spark DataFrame from the API response data display(df)
Frame (datal"data"]) > (7] Spark Jobe df = spark.createDat|
e s m en e » B df: pyspark.sql.dataframe. DataFrame = [IDNation: string, IDYear: long ... 4 more fields| # Remove spaces fron)
olace(* “, ") for col in df.coluans)) df = df.toDF(*(col.r]
Table v + New result table: OFF v
ake table path # Specify the Delta
bo/delta_ table” IDNation IDVear Nation Population SlugNation Year table_path = “/path/
1 01000US 2021 United States 329725481 united-states 2021
aspajiel tolakapsante 2 01000Us 2020 United States 326569308 united-states 2020 £ Uk Wi D“?”"""
") .mode ("overwrite").save(table_path) df.write.format(“del|
P s 01000US 2018 United States 324697785 united-states 2018
4 01000US 2018 United States 322903030 united-states 2018
iole” with the actual path where you want to save the Delta Lake Note: Replace "fpath/tofdelta_
5 01000US 2017 United States 321004407 united-states 2017 table,
& it ates -5 i
the AP, creates a Spark DataFrame from the data, removes 0100008 2016 United States | 318558162 | united-states | 2016 4 This code fetches the data fror
i writes the DataFrame as a Delta Lake table. . ) spaces from column names, af
+ 9rows | 7.68 seconds runtime Refreshed 1 minute ago

>

A similar prompt can be used to ingest JSON files from cloud storage into Delta

Lake tables, this time using SQL:

| have JSON files in a UC Volume here: /Volumes/rkurlansik/default/data_science/

sales_data.json

Write code to ingest this data into a Delta Lake table. Use SQL only,
and be concise!


https://www.databricks.com/blog/5-tips-get-most-out-your-databricks-assistant
https://datausa.io/api/data?drilldowns=Nation&measures=Population
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Assistant C X
1 minute ago (11s)
s%sql
CREATE TARI F_calps dado . uweo-uwes
L]
@ rafikurlansik@databricks.com o
Query returned no results
I have JSON files in a UC Volume here: [Volumesjrkurlar It/dat data.json
@ This result is stored as PySpark data frame _sqldf and in the IPython output cache as Out [20] . Learn more
Write code to ingest this data into a Delta Lake table. Use SQL only, and be concise!
O Assistant SO E I [» - [ saL
i 1 SBU T £ olne Lanesinetang St you van useng CRERT £ Rble wsql
statemen " o thie Delta Lake tzble. Then, you-san-yse SELECT # FROM sales data
the INSE insert the table. - T
» (1) Spark Jobs
Here's the concise code to ingest the JSON datainto a Delta Lake table using SQL:
» 3 _sqldf: pyspark.sal.dataframe.DataFrame = [company: string, quarters: array ... 1 more field]
ple: OFF v Table ~ + New result t;
%sql
CREATE TABLE sales_data company quarters
USING DELTA
i GnarlyTech

TRANSFORMING DATA FROM UNSTRUCTURED
TO STRUCTURED

Following tidy data principles, any given cell of a table should contain a single
observation with a proper data type. Complex strings or nested data structures
are often at odds with this principle, and as a result, data engineering work
consists of extracting structured data from unstructured data. Let’s explore two
examples where the Assistant excels at this task — using regular expressions and

exploding nested data structures.

Regular expressions
Regular expressions are a means to extract structured data from messy strings,
but figuring out the correct regex takes time and is tedious. In this respect, the

Assistant is a boon for all data engineers who struggle with regex.
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Consider this example using the Title column from the IMDb dataset:

25 Title & Certificate & Duration & Genre

1. The Shawshank Redemption (1994) R 142 min Drama
This column contains two distinct observations — film title and release year. With
the following prompt, the Assistant identifies an appropriate regular expression to

parse the string into multiple columns.

Here is an example of the Title column in our dataset: 1. The Shawshank
Redemption (1994). The title name will be between the number and the
parentheses, and the release date is between parentheses. Write a function
that extracts both the release date and the title name from the Title column in

the imdb_raw DataFrame.

Databricks|Q - 01 - Data curation and documentation &master  Python v 31 STlFcE e T A m
un al arverless v chadule i
File Edit View Run Help Lastedits inutes ago New cell Ul: ON v
[F) Assistant (s Is
- Generating regular expressions o
S Lo
& =+ g
il
Databricks Assistant
your work by ing errors, ing code or queries, and
answering questions. (> ] Cell 28 Python  #
Check out some examples to get started. Make sure to verify any generated
suggestions and share feedback S0 we can learn and improve,
f ter] t
t ! to run select

Find tables to query

Find some queries

Run data summarization

Here is an example of the Title column in our dataset: 1. The Shawshank

Redemption (1994). The titke name will be between the number and the

parentheses, and the release date is between parentheses. Write a function that

extracts both the release date and the tithe name from the Title column in the

imdb_raw DataFrame. Then dijolay the DataFrame. Only code, no explanatory

text B

=
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Providing an example of the string in our prompt helps the Assistant find the
correct result. If you are working with sensitive data, we recommend creating a
fake example that follows the same pattern. In any case, now you have one less

problem to worry about in your data engineering work.

Nested Structs, Arrays (JSON, XML, etc)
When ingesting data via API, JSON files in storage, or noSQL databases, the
resulting Spark DataFrames can be deeply nested and tricky to flatten correctly.

Take a look at this mock sales data in JSON format:

m +/ 2 minutes ago (57s) Cell 23 Python # [ ¢

df = spark.read.json("/Volumes/rkurlansik/default/data_science/sales_data.json")
display(df)

» (2) Spark Jobs

» B2 df: pyspark.sql.dataframe.DataFrame = [company: string, quarters: array ... 1 more field]

Table ~  + New result table: OFF v
company quarters year
GnarlyTech ~ array 2024
03
quarter: "Q1"
~ regions:
0:
name: "North America"
¥ products:
v o:

name: "Product A"
sales: 200000
¥ sales_breakdown:
~ by_customer_type:
enterprise: 80000
individual: 120000
online: 150000

retail: 50000
units_sold: 10000
LB
{"name": "Product B", "sales": 200000, "sales_breakdown": {"by_customer_type": {"enterprise": 60000,
"individual": 140000}, "online": 160000, "retail": 40000}, "units_sold": 5000} |
+  1row | 51.40 seconds runtime Refreshed 1 minute ago
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Data engineers may be asked to flatten the nested array and extract revenue
metrics for each product. Normally this task would take significant trial and

error — even in a case where the data is relatively straightforward. The Assistant,
however, being context-aware of the schemas of DataFrames you have in
memory, generates code to get the job done. Using a simple prompt, we get the

results we are looking for in seconds.

Write PySpark code to flatten the df and extract revenue for each product

and customer

Python v ¥
Nested JSON Py » Runall | ® rafikurlansik@databri.. v [ Schedule ~

File Edit View Run Help Lasteditwasiminuteago  New cell Ul ON v
[ Assistant CcilXx [©]
=) LR Just now (1s) Cell 23 Python '+ [ ¢ 4
N df = spark.read.json("/Volumes/rkurlansik/default/data_science/sales_data.json") 5
D
oo + display(df)
& ;(:-w ] » (2) Spark Jobs ()
» @ df: pyspark.sql.dataframe.DataFrame = [company: string, quarters: array ... 1 more field] i
Databricks Assistant
Table v+ New result table: OFF v
Accelerate your work by diagnosing errors, suggesting code or
queries, and answering questions. company quarters

GnarlyTech ¥ array
o
quarter: Q1"
 regions:

Check out some examples to get started. Make sure to verify any
generated suggestions and share feedback so we can learn and
improve.

name: "North America”
* products:
v o:
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REFACTORING, DEBUGGING AND OPTIMIZATION

Another scenario data engineers face is rewriting code authored by other
team members, either ones that may be more junior or have left the company.
In these cases, the Assistant can analyze and explain poorly written code by
understanding its context and intent. It can suggest more efficient algorithms,

refactor code for better readability, and add comments.

Improving documentation and maintainability
This Python code calculates the total cost of items in an online shopping cart.

def calculate_total(cart_items):
total = 0
for i in range(len(cart_items)):
if cart_items[i]['type'] == 'book':
discount = cart_items[i]['price'] * 0.05
total += cart_items[i]['price'] - discount
else:
total += cart_items[i]['price']
return total

cart_items = [{'name': 'Python Programming', 'type': 'book', ‘'price': 50},
{'name': 'Laptop', 'type': ‘'electronics', 'price': 800}]
total_price = calculate_total(cart_items)

The use of conditional blocks in this code makes it hard to read and inefficient at
scale. Furthermore, there are no comments to explain what is happening. A good
place to begin is to ask the Assistant to explain the code step by step. Once the
data engineer understands the code, the Assistant can transform it, making it

more performant and readable with the following prompt:

Rewrite this code in a way that is more performant, commented properly, and

documented according to Python function documentation standards

< databricks
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The generated example below properly documents the code, and uses
generator expressions instead of conditional blocks to improve memory
utilization on larger datasets.

def calculate_total(cart_items):

Calculate the total price of items in the shopping cart.

Apply a 5% discount to book items. The total is calculated by summing
the prices, taking into account the discount for books.

Parameters:

cart_items (list of dict): A list of dictionaries, where each dictionary
represents an item in the cart with keys 'name’,
'type', and 'price'.

Returns:

float: The total price of all items in the cart after discounts.

nin

# Use a generator expression to iterate over cart items, applying a 5% discount
to books.

return sum(item('price'] * ©0.95 if item['type'] == 'book' else item['price'] for
item in cart_items)

# Example usage

cart_items = [{'name': 'Python Programming', 'type': 'book', 'price': 50},
{'name': 'Laptop', 'type': 'electronics', 'price': 800}]

total_price = calculate_total(cart_items)



Diagnosing errors

Inevitably, data engineers will need to debug. The Assistant eliminates the need
to open multiple browser tabs or switch contexts in order to identify the cause
of errors in code, and staying focused is a tremendous productivity boost. To
understand how this works with the Assistant, let's create a simple PySpark

DataFrame and trigger an error.

Assistant & 25X
m Cell 3 Python i []
(o]
# Create a DataFrame
& data = [
4 {'name’: 'Python Programming', ‘type': ‘book', ‘'price': 5@},
(::3 ('_ {'name': ‘'Laptop', "type': 'electronics', 'price': 800}
: ]
. i columns = [‘name', ‘price', 'type'l
Databricks Assistant
Accelerate your work by diagnosing errors, suggesting code or df = spark.createDataFrame(data, columns)
queries, and answering questions. display(df)

Check out some examples to get started. Make sure to verify any
generated suggestions and share feedback so we can learn and
improve. > Cell 4

# typo error
df = df.withColumn('fractional_price’, df.price / 10)

display(df)

[shift+Enter] to run
- [Shift+Ctri+Enter] to run selected text
Rename my notebook to something meaningful ]

Find tables to query

Find some queries

Ask assistant or type '/ for commands B

In the above example, a typo is introduced when adding a new column to the
DataFrame. The zero in “10” is actually the letter “O”, leading to an invalid decimal
literal syntax error. The Assistant immediately offers to diagnose the error. It
correctly identifies the typo, and suggests corrected code that can be inserted
into the editor in the current cell. Diagnosing and correcting errors this way can

save hours of time spent debugging.

Transpiling pandas to PySpark

Pandas is one of the most successful data-wrangling libraries in Python and

is used by data scientists everywhere. Sticking with our JSON sales data, let’s
imagine a situation where a novice data scientist has done their best to flatten
the data using pandas. It isn't pretty, it doesn’t follow best practices, but it

produces the correct output:

import pandas as pd
import json

with open("/Volumes/rkurlansik/default/data_science/sales_data.json") as file:
data = json.load(file)

# Bad practice: Manually initializing an empty DataFrame and using a deeply nested
for-loop to populate it.

df = pd.DataFrame(columns=['company', 'year', 'quarter', 'region_name', 'product_
name', 'units_sold', 'product_sales'])

for quarter in data['quarters']:
for region in quarter['regions']:
for product in region['products']:
df = df.append({
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By default, Pandas is limited to running on a single machine. The data engineer
shouldn’t put this code into production and run it on billions of rows of data until
it is converted to PySpark. This conversion process includes ensuring the data
engineer understands the code and rewrites it in a way that is maintainable,
testable, and performant. The Assistant once again comes up with a better

solution in seconds.

Assistant (&

rA
LdJ
X

. rafi.kurlansik@databricks.com

Rewrite this inefficient pandas code in PySpark

(L Assistant &y G

Certainly! Here's the rewrite of the inefficient pandas code using PySpark:

> » If

— © — N PY-SPET K S G v S P A FKS €S L0
from pyspark.sql. functions import col, upper

# Create SparkSession
spark = SparkSession.builder.getOrCreate()

# Load the JSON data into a DataFrame
sales_data = spark.read.json("/Volumes/rkurlansik/default/data_science/sales_data.json")

# Extract the necessary columns from the nested structure

df = sales_data.select(
col("company").alias("company"),
col("year").cast("integer").alias("year"),
col("quarters.quarter").alias("quarter"),
col("quarters.regions.name").alias("region_name"),
col("quarters.regions.products.name").alias("product_name"),
col("quarters.regions.products.units_sold").cast("integer").alias("units_sold"),
col("quarters.regions.products.sales").cast("integer").alias("product_sales")

)

# Convert strlng columns to uppercase

df = df:mlth@l&m&”mc@ueﬁ L@ﬁﬁ@?@@(t{‘"@f@@@@t—@ﬂ@” 1)

# Display the DataFrame
df.show()
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Note the generated code includes creating a SparkSession, which isn't required

in Databricks. Sometimes the Assistant, like any LLM, can be wrong or hallucinate.
You, the data engineer, are the ultimate author of your code and it is important to
review and understand any code generated before proceeding to the next task. If

you notice this type of behavior, adjust your prompt accordingly.

WRITING TESTS

One of the most important steps in data engineering is to write tests to ensure
your DataFrame transformation logic is correct, and to potentially catch any
corrupted data flowing through your pipeline. Continuing with our example

from the JSON sales data, the Assistant makes it a breeze to test if any of the
revenue columns are negative - as long as values in the revenue columns are
not less than zero, we can be confident that our data and transformations in this

case are correct.

Python v ¥%
Nested JSON Py > Runall | ® rafikurlansik@databri.. v E3 Schedule ~

die ale Vew Rur dbb lesedtwas Fminesage AwcElEGRY
N 3 GnarlyTech 2024 (<l Europe Product C 190000 50000
[E Assistant (ot - 4 )
4 GrarlyTech 2024 Q1 Europe Product D 40000 20000
(=] > 5  GnarlyTech 2024 Q1 Asia Product E 220000 80000 4
2 P oy ey g —— 6 GrarlyTech 2024 Qz North America  Product A 180000 60000 3 ®
|| S CEETI T T S R Y A0rows | 08 <e, o ——— Pafrochad 17 minutas ann
= o & quarter”, “explode(quarters. regwnsi as

107 [

Python # [ 3 !t

ir
penducts), as ng . cell25
@ s quarfer!; WA Start: typihguor? generatezwiths AL (2 T .
EaT "regiont,; products sname.as: product 3
[Shiti+Erter] j tozrunsandmovestosnext:tell’
[E5E HINE see al Wkeyboard 3Rortcutsys

Mproducts.sales_breakdown.online:as -
online_revenue", -
‘iproducts.sales_breakdown.retail ‘as
retail_revenue",

“iproductsisales breakdown. -
by_customer_type.individual-as
individual_revenue",
‘iproducts.sales_breakdown., *,

regions*) \
«selectExpr("company", "year", "quarter",
by_customer_type.enterprise-as
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We can build off this logic by asking the Assistant to incorporate the test into

PySpark’s native testing functionality, using the following prompt:

Write a test using assertDataFrameEqual from pyspark.testing.utils to check
that an empty DataFrame has the same number of rows as our negative

revenue DataFrame.

The Assistant obliges, providing working code to bootstrap our testing efforts.

Testing with the Assistant Python v ¥r .
) » Runall ® rafi.kurlansik@databri... v B3 schedule ~
File Edit View Run Help Last edit was now New cell Ul: ON v
@ Assistant c X o]
To use assertDataFrameEqual from pyspark. testing.utils to > 1 minute ago (3s)
= assert that an empty DataFrame has the same number of rows as the 4
from pyspark.sql import SparkSession
N negative revenue DataFrame, you can follow these steps: )
& from pyspark.testing.utils import assertDataFrameEqual 9
1. Impert the necessary modules from pyspark. sql and
2]
[€] pyspark. testing.utils, spark = SparkSession.builder.getOrCreate() 9
2. Use the assertDataF rameEqual function to assert that both | |
DataFrames have the same number of rows. # Create empty DataFrame with the same schema as the negative revenue DataFrame L
Here's the code to perform the assertion: empty_df = spark.createDataFrame( [}, schema=negative_revenue_df.schema)
> # Assert that the empty DataFrame and the negative revenue DataFrame have the same number of rows
try:
from pyspark.sql import SparkSession assertDataFrameEqual(empty_df, negative_revenue_df)
from pyspark.testing.utils import except AssertionError:
assertDataFrameEqual raise AssertionError("The DataFrames do not have the same number of rows")
spark = SparkSession.builder.getOrCreate() DRSS
» B empty_df: pyspark.sql.dataframe.DataFrame = [company: string, year: long ... 7 more fields]
# Create empty DataFrame with the same schema as
the negative revenue DataFrame
empty_df = spark.createDataFrame([], [shift+Enter] to run and move to next cell
schema=negative_revenue_df.schema) [Esc H] to see all keyboard shortcuts
# Assert that the empty DataFrame and the negative
revenue DataFrame have the same number of rows
try:
assertDataFrameEqual(empty_df,
negative_revenue_df)
except AssertionError:
raise AssertionError(“The DataFrames do not
Note that you need to replace negative_revenue_df with the actual
B
=]

This example highlights the fact that being specific and adding detail to your
prompt yields better results. If we simply ask the Assistant to write tests for us
without any detail, our results will exhibit more variability in quality. Being specific
and clear in what we are looking for — a test using PySpark modules that builds
off the logic it wrote — generally will perform better than assuming the Assistant

can correctly guess at our intentions.
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GETTING HELP

Beyond a general capability to improve and understand code, the Assistant
possesses knowledge of the entire Databricks documentation and Knowledge
Base. This information is indexed on a regular basis and made available as
additional context for the Assistant via a RAG architecture. This allows users
to search for product functionality and configurations without leaving the

Databricks Platform.

For example, if you want to know details about the system environment for the
version of Databricks Runtime you are using, the Assistant can direct you to the

appropriate page in the Databricks documentation.

@ rafi.kurlansik@databricks.com

| need to know more about the versions of libraries in the most recent
Databricks Runtime, can you give me a link?

. Assistant

To aet information about the versions of libraries in the most recent
lease Databricks Runtime, you can refer to the Databricks Runtime Re
» changes, Notes. The release notes provide detailed information about th¢
rsion. improvements, and new features in each Databricks Runtime ve

| this link: You can find the Databricks Runtime Release Notes by following

https://docs.databricks.com/release-notes/index.html

| are You can navigate to the specific Databricks Runtime version yol
Itis interested in to see the library versions included in that version
atabricks recommended to check the release notes for the most recent D

Runtime version to get the most up-to-date information.
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The Assistant can handle simple, descriptive, and conversational questions,
enhancing the user experience in navigating Databricks’ features and resolving
issues. It can even help guide users in filing support tickets! For more details, read

the announcement article.
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CONCLUSION

The barrier to entry for quality data engineering has been lowered thanks to

the power of generative Al with the Databricks Assistant. Whether you are a
newcomer looking for help on how to work with complex data structures or a
seasoned veteran who wants regular expressions written for them, the Assistant
will improve your quality of life. Its core competency of understanding, generating,
and documenting code boosts productivity for data engineers of all skill levels.

To learn more, see the Databricks documentation on how to get started with the

Databricks Assistant today.



https://docs.databricks.com/en/notebooks/databricks-assistant-faq.html
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Applying Software Development and
DevOps Best Practices to Delta Live Table

Pipelines
by Alex Ott

Databricks Delta Live Tables (DLT) radically simplifies the development of the
robust data processing pipelines by decreasing the amount of code that data
engineers need to write and maintain. And also reduces the need for data
maintenance and infrastructure operations, while enabling users to seamlessly
promote code and pipelines configurations between environments. But people
still need to perform testing of the code in the pipelines, and we often get
questions on how people can

do it efficiently.

In this chapter we'll cover the following items based on our experience working
with multiple customers:
= How to apply DevOps best practices to Delta Live Tables

= How to structure the DLT pipeline’s code to facilitate unit

and integration testing

= How to perform unit testing of individual transformations of your

DLT pipeline
= How to perform integration testing by executing the full DLT pipeline
= How to promote the DLT assets between stages

= How to put everything together to form a CI/CD pipeline (with Azure
DevOps as an example)

< databricks

23



https://en.wikipedia.org/wiki/DevOps
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APPLYING DEVOPS PRACTICES TO DLT: THE BIG PICTURE

The DevOps practices are aimed at shortening the software development life
cycle (SDLC) providing the high quality at the same time. Typically they include
these steps:

= Version control of the source code and infrastructure

= Code reviews

= Separation of environments (development/staging/production)

= Automated testing of individual software components and the whole

product with the unit and integration tests

= Continuous integration (testing) and continuous deployment of
changes (CI/CD)

All these practices can be applied to Delta Live Tables pipelines as well:

< databricks

- Developer

fDatabricks Repo (staging area)

¥ [ helpers
_init__.py
columns_helpers.py
» B images
. v [ pipelines
DLT-Pipeline.py
» [ terratorm
v [ tests
Ad integration

DLT-Pipeline-Test.py
¥ [ unit-local
test_columns_helpers.py
¥ [ unit-notebooks
test_column_helpers.py.py
azure-pipelines.yml

B
o

DLT Pipeline

IAERRERT
Ty

Notebooks I
(code, tests)

Test DLT
Pipeline

|,_____J
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Files code
(code, tests)

1. Update repository
2.Run local tests

4.Run test DLT Pipeline

3. Run tests in notebooks

A

v [ helpers b o —
_init__py e o p—
columns_helpers.py T b - - — =
» } images ES j
YW Ppetnes B Notebooks
DLT-Pipeline.py (CDdE TES[S)
> terraform '
v B tests -
w* [ integration
DLT-Pipeline-Test.py
v unit-focal

test_columns_helpers.py
v unit-notebooks
test_column_helpers.py.py
azure-pipelines.yml

Files
(code, tests)

Test DLT
Pipeline

v B8 heiers f—
_init_.py :: J—
columns_helpers.py T

» [ images EN

v ! pipelines

i f
DLT Pipeline
Update repository

DLT-Pipeline_py (::N;r;czb?:;z)
» terraform '
v tests -t
v integration

DLT-Pipeline-Test.py
v unit-local

CI/ED
(build gpeline)

Trigger
release pipeline

test_columns_helpers.py

v unit-notebooks
test_column_helpers.py.py
azure-pipelines.ymi

Files i
B .

Figure: DLT development workflow

Cl/ICD
(release pipeline)
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To achieve this we use the following features of Databricks product portfolio:

= Databricks Repos provide an interface to different Git services, so we
can use them for code versioning, integration with CI/CD systems, and

promotion of the code between environments
= Databricks CLI (or Databricks REST API) to implement CI/CD pipelines

= Databricks Terraform Provider for deployment of all necessary

infrastructure and keeping it up to date

The recommended high-level development workflow of a DLT pipeline

is as following:

Initial setup

Create Create —
— ——————> DLT pipeline
Notebook(s) Pipel

Cl/cD

Trigger build/tests
\
rwhen \’&d\l/?ﬁ @ ’ 0

ormmi —
c /? - Git

Development cycle

dif —
Modify Validate / Run . Promote
— > DLT pipeline
changes
\7)/7
< Analyze results D
databricks

1. A developer is developing the DLT code in their own checkout of a Git

repository using a separate Git branch for changes.

2. When code is ready and tested, code is committed to Git and a pull request

is created.
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3. CI/CD system reacts to the commit and starts the build pipeline (Cl part of CI/
CD) that will update a staging Databricks Repo with the changes, and trigger

execution of unit tests.

a. Optionally, the integration tests could be executed as well, although
in some cases this could be done only for some branches, or as a

separate pipeline.

4.1f all tests are successful and code is reviewed, the changes are merged into

the main (or a dedicated branch) of the Git repository.

5. Merging of changes into a specific branch (for example, releases) may trigger a
release pipeline (CD part of CI/CD) that will update the Databricks Repo in the
production environment, so code changes will take effect when pipeline runs

next time.

As illustration for the rest of the chapter we'll use a very simple DLT pipeline
consisting just of two tables, illustrating typical Bronze/Silver layers of a typical
lakehouse architecture. Complete source code together with deployment

instructions is available on GitHub.

& clickstream_filtered ©
Completed - 20s

& clickstream_raw @
Completed - 38s

® 23M 0 ® 12M 10M

| Figure: Example DLT pipeline

Note: DLT provides both SQL and Python APIs, in most of the chapter we focus
on Python implementation, although we can apply most of the best practices
also for SQL-based pipelines.


https://docs.databricks.com/repos/index.html
https://docs.databricks.com/dev-tools/cli/index.html
https://docs.databricks.com/dev-tools/api/latest/index.html
https://registry.terraform.io/providers/databricks/databricks/latest/docs
https://www.databricks.com/glossary/medallion-architecture
https://www.databricks.com/glossary/data-lakehouse
https://github.com/alexott/dlt-files-in-repos-demo



https://docs.databricks.com/delta-live-tables/updates.html#development-and-production-modes
https://docs.databricks.com/repos/work-with-notebooks-other-files.html#work-with-python-and-r-modules
https://docs.databricks.com/files/workspace-modules.html
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And the code from this Python package could be used inside the DLT

pipeline code:

-Pipeli fymain  Python v

DLT: Plpellne » Run all ® Connect v

File Edit View Run Help Lasteditwasnow Give feedback

IE Cmd 5
1 # impo halpe sretion om_the current repository
2 import helpers.columns_helpers as ch Import Python package from the Databricks Repo

Cmd 6
1, @dlt.table(
2 comment="Leave only links, and exclude some columns from dataset"
3 )
B @dlt.expect_or_drop("only links", "type is not null and type in ('link', 'redlink')")
5 def clickstream_filtered():
6 df = dlt.read("clickstream_raw")
7 # use imported function
8 new_cols @ept (df, ['prev_id', 'prev_title']) Use function from the imported package
9 return df.select(*new_cols)
Figure: Using functions from the Python package in the DLT code

Note, that function in this particular DLT code snippet is very small — all it's doing
is just reading data from the upstream table, and applying our transformation
defined in the Python module. With this approach we can make DLT code simpler
to understand and easier to test locally or using a separate notebook attached
to an interactive cluster. Splitting the transformation logic into a separate Python
module allows us to interactively test transformations from notebooks, write unit
tests for these transformations and also test the whole pipeline (we'll talk about

testing in the next sections).
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The final layout of the Databricks Repo, with unit and integration tests, may look

as following:
v helpers s Python package with transformations, etc
_init__.py

columns_helpers.py
v pipelines

DLT-Pipeline.py +————  Notebook with code for main DLT pipeline

4 terraform
v tests
v integration

DLT-Pipeline-Test.py «—————— Additional notebooks that validate results of main DLT pipeline
v unit-local ———————  Python code with unit tests to be executed locally
test_columns_helpers.py
v unit-notebooks ¢——o———— Notebooks with tests that are executed via Nutter

test_column_helpers.py.py

Figure: Recommended code layout in Databricks Repo

This code structure is especially important for bigger projects that may consist

of the multiple DLT pipelines sharing the common transformations.
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IMPLEMENTING UNIT TESTS

As mentioned above, splitting transformations into a separate Python module
allows us easier write unit tests that will check behavior of the individual
functions. We have a choice of how we can implement these unit tests:

= We can define them as Python files that could be executed locally, for

example, using pytest. This approach has following advantages:

= We can develop and test these transformations using the IDE, and
for example, sync the local code with Databricks repo using the
Databricks extension for Visual Studio Code or dbx sync command if

you use another IDE

= Such tests could be executed inside the CI/CD build pipeline without
need to use Databricks resources (although it may depend if some
Databricks-specific functionality is used or the code could be

executed with PySpark)

= We have access to more development related tools — static code
and code coverage analysis, code refactoring tools, interactive
debugging, etc.

= We can even package our Python code as a library, and attach to

multiple projects
= We can define them in the notebooks — with this approach:

= We can get feedback faster as we always can run sample code and

tests interactively

= We can use additional tools like Nutter to trigger execution of
notebooks from the CI/CD build pipeline (or from the local machine)

and collect results for reporting
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The demo repository contains a sample code for both of these approaches — for
local execution of the tests, and executing tests as notebooks. The Cl pipeline

shows both approaches.

Please note that both of these approaches are applicable only to the Python
code — if you're implementing your DLT pipelines using SQL, then you need to

follow the approach described in the next section.

IMPLEMENTING INTEGRATION TESTS

While unit tests give us assurance that individual transformations are working
as they should, we still need to make sure that the whole pipeline also works.
Usually this is implemented as an integration test that runs the whole pipeline,
but usually it's executed on the smaller amount of data, and we need to validate
execution results. With Delta Live Tables, there are multiple ways to implement
integration tests:

= Implement it as a Databricks Workflow with multiple tasks — similarly what
is typically done for non-DLT code

= Use DLT expectations to check pipeline’s results

IMPLEMENTING INTEGRATION TESTS WITH
DATABRICKS WORKFLOWS

In this case we can implement integration tests with Databricks Workflows with
multiple tasks (we can even pass data, such as, data location, etc. between tasks
using task values). Typically such a workflow consists of the following tasks:

= Setup data for DLT pipeline

= Execute pipeline on this data

= Perform validation of produced results.


https://docs.databricks.com/dev-tools/vscode-ext.html
https://docs.databricks.com/dev-tools/dbx-sync.html
https://github.com/microsoft/nutter
 https://github.com/alexott/dlt-files-in-repos-demo/tree/main/tests/unit-local
https://github.com/alexott/dlt-files-in-repos-demo/tree/main/tests/unit-notebooks
https://github.com/alexott/dlt-files-in-repos-demo/blob/main/azure-pipelines.yml
https://www.databricks.com/blog/2022/08/02/sharing-context-between-tasks-in-databricks-workflows.html
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DLT integration test example

Runs Tasks

setup_test execute_dlt validate_results

[J ...s.com/DLT/DLT Pipeline Test: Setup EH Pipeline: DLT + Files in Repos dem... [ _./DLT Pipeline Test: Validate Results

£ Job_cluster & Job_cluster

Figure: Implementing integration test with Databricks Workflows

The main drawback of this approach is that it requires writing quite a significant
amount of the auxiliary code for setup and validation tasks, plus it requires

additional compute resources to execute the setup and validation tasks.

USE DLT EXPECTATIONS TO IMPLEMENT
INTEGRATION TESTS

We can implement integration tests for DLT by expanding the DLT pipeline with
additional DLT tables that will apply DLT expectations to data using the fail
operator to fail the pipeline if results don't match to provided expectations.
It's very easy to implement - just create a separate DLT pipeline that will
include additional notebook(s) that define DLT tables with expectations

attached to them.

For example, to check that silver table includes only allowed data in the type

column we can add following DLT table and attach expectations to it:

1 @dlt.table(comment="Check type")

2 @dlt.expect_all_or_fail({"valid type": "type in ('link', 'redlink"')",
"type is not null": "type is not null"})

3 def filtered_type_check():

return dlt.read("clickstream_filtered").select("type")

< databricks
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Resulting DLT pipeline for integration test may look as following (we have two

additional tables in the execution graph that check that data is valid):

& filtered_count_che.. @
Completed - 1s

®1 0
& clickstream_raw @ & clickstream_filtered ©@
Completed - 24s Completed - 19s
® 23M (1] ® 12M 10M

&= filtered_type_check @
Completed - 18s

® 12M o

Figure: Implementing integration tests using DLT expectations

This is the recommended approach to performing integration testing of DLT
pipelines. With this approach, we don’'t need any additional compute resources
- everything is executed in the same DLT pipeline, so get cluster reuse, all data is

logged into the DLT pipeline’s event log that we can use for reporting, etc.

Please refer to DLT documentation for more examples of using DLT expectations
for advanced validations, such as, checking uniqueness of rows, checking
presence of specific rows in the results, etc. We can also build libraries of

DLT expectations as shared Python modules for reuse between different

DLT pipelines.


https://docs.databricks.com/workflows/delta-live-tables/delta-live-tables-expectations.html
https://docs.databricks.com/delta-live-tables/expectations.html#fail-on-invalid-records
https://docs.databricks.com/delta-live-tables/expectations.html#fail-on-invalid-records
https://docs.databricks.com/delta-live-tables/observability.html
https://docs.databricks.com/delta-live-tables/expectations.html#perform-advanced-validation-with-delta-live-tables-expectations
https://docs.databricks.com/delta-live-tables/expectations.html#make-expectations-portable-and-reusable
https://docs.databricks.com/delta-live-tables/expectations.html#make-expectations-portable-and-reusable
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PROMOTING THE DLT ASSETS BETWEEN ENVIRONMENTS

When we're talking about promotion of changes in the context of DLT, we're

talking about multiple assets:

= Source code that defines transformations in the pipeline
= Settings for a specific Delta Live Tables pipeline

The simplest way to promote the code is to use Databricks Repos to work with
the code stored in the Git repository. Besides keeping your code versioned,
Databricks Repos allows you to easily propagate the code changes to other

environments using the Repos REST API or Databricks CLI.

From the beginning, DLT separates code from the pipeline configuration to make
it easier to promote between stages by allowing to specify the schemas, data
locations, etc. So we can define a separate DLT configuration for each stage that
will use the same code, while allowing you to store data in different locations, use

different cluster sizes, etc.

To define pipeline settings we can use Delta Live Tables REST APl or Databricks
CLI's pipelines command, but it becomes difficult in case you need to use
instance pools, cluster policies, or other dependencies. In this case the more
flexible alternative is Databricks Terraform Provider’s databricks_pipeline

resource that allows easier handling of dependencies to other resources, and we

can use Terraform modules to modularize the Terraform code to make it reusable.

The provided code repository contains examples of the Terraform code for

deploying the DLT pipelines into the multiple environments.

< databricks
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PUTTING EVERYTHING TOGETHER TO FORM
A CI/CD PIPELINE

After we implemented all the individual parts, it's relatively easy to implement

a CI/CD pipeline. GitHub repository includes a build pipeline for Azure DevOps
(other systems could be supported as well — the differences are usually in the
file structure). This pipeline has two stages to show ability to execute different

sets of tests depending on the specific event:

= onPush is executed on push to any Git branch except releases branch and
version tags. This stage only runs and reports unit tests results (both local

and notebooks).

= onRelease is executed only on commits to the releases branch, and in

addition to the unit tests it will execute a DLT pipeline with integration test.

A
Stages Jobs

<

O onRelease

<

@ onPush

w
Y

Skipped 1 job completed TIm

A 100% tests passed

Figure: Structure of Azure DevOps build pipeline


https://docs.databricks.com/repos/index.html
https://docs.databricks.com/dev-tools/api/latest/repos.html#operation/update-repo
https://docs.databricks.com/dev-tools/cli/repos-cli.html
https://docs.databricks.com/delta-live-tables/settings.html
https://docs.databricks.com/delta-live-tables/api-guide.html
https://docs.databricks.com/dev-tools/cli/dlt-cli.html
https://docs.databricks.com/dev-tools/cli/dlt-cli.html
https://registry.terraform.io/providers/databricks/databricks/latest/docs/resources/pipeline
https://registry.terraform.io/providers/databricks/databricks/latest/docs/resources/pipeline
https://github.com/alexott/dlt-files-in-repos-demo/tree/main/terraform/azuredevops
https://github.com/alexott/dlt-files-in-repos-demo/blob/main/azure-pipelines.yml
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Except for the execution of the integration test in the onRelease stage, the

structure of both stages is the same — it consists of following steps: :
¢ Jobsin run #20221221.6 ¥ onReleaseJob
1. Checkout the branch with ChangeS DLT Files In Repos Build Pipeline
2. Set up environment — install Poetry which is used for managing Python
) . ) ) . onPush 1 Pool: Azure Pipelines
environment management, and installation of required dependencies 2  Image: ubuntu-20.04
3. Update Databricks Repos in the staging environment onPushJob 3 Agent: Hosted Agent
4 Started: Yesterday at 16:59
4. Execute local unit tests using the PySpark Al 5 Duration: 11m 29s
onkeiease
. . . . ]
5. Execute the unit tests implemented as Databricks notebooks using Nutter ,
o @ S 7 » Job preparation parameters
H H on 11 7CGc
6. For releases branch, execute integration tests AL 8 A 108% tests passed
7. Collect test results and publish them to Azure DevOps Initialize job 25
€ Use Python 3.8 s
€ Checkout & Build.Rea... 1s
€ Install dependen... 1m 20s
) Add poetry to PATH <1s
€) Update Staging project
€ Execute local tests 125
€ Execute Nutter tests 29¢
€ Execute DLT Inte... 9m 16s
€ PublishTestResults As
€ Post-job: Checkout ... <1s

< databricks


https://python-poetry.org/
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Results of tests execution are reported back to the Azure DevOps, so we can

track them:
Summary
3 Run(s) Completed ( 3 Passed, 0 Failed ) 1 unique failing test in the last 14 days
7 rerses 100% 9M29s O
Total tests 0 @ Failed Pass percentage Run duration (O Tests not reported
0 @ Others T 14.2% T +5m 14s
{8 Testrun /|
Y Tags ™ Test file Ow
Test Duration ! Failing since Failing
~ ~ DLT Integration test (1/1 0:09:16.000
~ DLT + Files in Repos Integration Test (Staging) 0:09:16.000
© v v pytest (3/3) 0:00:11.060
v test_columns_except 0:00:06.847
v test_dataframe_except_columns 0:00:02.307
~ test_add_missing_columns 0:00:01.550
¥~ nutter (3/3) 0:00:02.033
~ add_missing_columns 0:00:01.483
v dataframe_except_columns 0:00:00.476
~ columns_except 0:00:00.074
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<« Jobsinrun #2023040...

DLT Files In Repos Release Pipeline

Jobs Pool: Azure Pipelines

Image: ubuntu-latest

v @ Job 185 Agent: Hosted Agent

Initialize job <ls ﬁuration: 18s

o Checkout DLTFilesInR._.. 3s 7 » Job preparation parameters

@ Install databricks-cli 9s

@ Update Production re... 2s

@ Post-job: Checkout ... <1s
Finalize Job <1s
Report build status <1s

If commits were done to the releases branch and all tests were successful, the
release pipeline could be triggered, updating the production Databricks repo, so

changes in the code will be taken into account on the next run of DLT pipeline.

< databricks

Try to apply approaches described in this chapter to your Delta Live Table
pipelines! The provided demo repository contains all necessary code together
with setup instructions and Terraform code for deployment of everything to

Azure DevOps.


https://github.com/alexott/dlt-files-in-repos-demo/blob/main/azure-pipelines-release.yml
https://github.com/alexott/dlt-files-in-repos-demo
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Unity Catalog Governance in Action:

Monitoring, Reporting and Lineage
by Ari Kaplan and Pearl Ubaru
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Databricks Unity Catalog (UC) provides a single unified governance solution for all of a company’s data and Al

assets across clouds and data platforms. This chapter digs deeper into the prior Unity Catalog Governance

Value Levers blog to show how the technology itself specifically enables positive business outcomes through

comprehensive data and Al monitoring, reporting, and lineage.

OVERALL CHALLENGES WITH TRADITIONAL
NON-UNIFIED GOVERNANCE

The Unity Catalog Governance Value Levers blog discussed the “why” of the
organizational importance of governance for information security, access control,
usage monitoring, enacting guardrails, and obtaining “single source of truth”
insights from their data assets. These challenges compound as their company
grows and without Databricks UC, traditional governance solutions no longer

adequately meet their needs.

The major challenges discussed included weaker compliance and fractured
data privacy controlled across multiple vendors; uncontrolled and siloed
data and Al swamps; exponentially rising costs; loss of opportunities, revenue,

and collaboration.

< databricks

HOW DATABRICKS UNITY CATALOG SUPPORTS A UNIFIED
VIEW, MONITORING, AND OBSERVABILITY

So, how does this all work from a technical standpoint? UC manages all registered
assets across the Databricks Data Intelligence Platform. These assets can be
anything within Bl, DW, data engineering, data streaming, data science, and ML.
This governance model provides access controls, lineage, discovery, monitoring,
auditing, and sharing. It also provides metadata management of files, tables,

ML models, notebooks, and dashboards. UC gives one single view of your entire
end-to-end information, through the Databricks asset catalog, feature store and
model registry, lineage capabilities, and metadata tagging for data classifications,

as discussed below:


https://www.databricks.com/blog/unity-catalog-governance-value-levers
https://www.databricks.com/product/unity-catalog
https://www.databricks.com/blog/unity-catalog-governance-value-levers
https://www.databricks.com/blog/unity-catalog-governance-value-levers
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Unified view of the entire data estate = Feature Store and Model Registry: define features used by data scientists

= Asset catalog: through system tables that contain metadata, you can see within the centralized repository. This is helpful for consistent model

‘ I ﬂ'”mhnrj-j ) Search data notabooks. recents_andmora ...,

all that is contained in your catalog such as schemas, tables, columns, files,

models, and more. If you are not familiar with volumes within Databricks,

they are used for managing non-tabular datasets. Technically, they are

logical volumes of storage to access files in any format: structured, semi-

structured, and unstructured.

forecasts__u_s__postal_codes_sa.,

AT Taabens

training and inference for your entire Al workflow.

= Lineage capabilities: trust in your data is key for your business to take
action in real life. End-to-end transparency into your data is needed for
trust in your reports, models, and insights. UC makes this easy through
lineage capabilities, providing insights on: What are the raw data sources?
Who created it and when? How was data merged and transformed? What
is the traceability from the models back to the datasets they are trained

on? Lineage shows end-to-end from data to model - both table-level and

Catalog Explorer souw-a-vemetsiore & O Send feedback
e © " Catalogs column-level. You can even query across data sources such as Snowflake
& Catalog 7 v o )
e By a and benefit immediately:
Created at O _databricks_internal Name

2023-04-27 09:43:39

2023-11-02 11:02:02

2023-11-27 09:46:19

2023-10-18 08:35:10

organizations_annual_filing 2023-10-24 08:49:07

2022-06-13 14:09.54

2023-06-27 10:58:25

>
> O _deme_catalog

> @ (eatalog)

> [ boat

> dais_lineage_demo

> [ dais-lakehouse-demo
» @ daiwt_munich

> @ dbsql_tpch_demo
> [ delta_sharing

> @ deltasharing

> @ demo

> [ demo_flight_daiswi_paris
>
>

databricks_internal

_demo_catalog

claritype__inc__irs_99|

dais_|

lineage.demo.landing_zone
fVolumesflineage/demoflanding_zone/*

user_id string user_id string
Table amount double amount double

snowflake.app.churn_app_events o Show 10 more columns Show 10 more columns
paul.reome@databricks.com

FLAKE
2023-11-07 02:56:09 O demo_tlight_daiwt_milan dai ENOWETAKE

.2q: demo_frank i USER_ID string
2023-10-12 03:39:47 g < EVENT_ID string

2023-11-07 07:41:48
2023-11-07 07:43:29
2023-10-24 08:50:53
2023-06-05 10:09:31
2023-12-12 04:2118
2023-06-22 23:29:22

2023-06-05 15:01:42

< databricks

> @ demo_mysql_lf

> @ demo_uc

> [ demo_uc_youssef
> [ demo-forecasting
> @ dev

> O employee

> @ employees

» [ erika

Delta Sharing

External Data

databricks_llama_2_m|

db_omics_solace

dbdemos

dbsql_tpeh_demo

Catalog Explorer lets you discover and govern all your data and ML models

Show 6 more columns

Data sources can be across platforms such as Snowflake and Databricks

ata_u_s_postal_codes_sample 2023-11-20 14:20:57 > 8 daiwt-london
> [ daiwtparisevinet
kminants_of_health_us_snly_ 2023-10-24 04:06:26 > O datoset
! Table Table
2023-12-21 03:36:29 > O db_omics_sclace bge_embedding
> @ dbdemos ineace.demo.bronze_ S iinpane dema aold
2023-06-05 09:33:44 boat = ————— : 1_5‘..... Wmm . -

user_id string
amount double


https://www.databricks.com/product/feature-store
https://docs.databricks.com/en/mlflow/model-registry.html
https://docs.databricks.com/en/data-governance/unity-catalog/data-lineage.html
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= Metadata tagging for data classifications: enrich your data and queries by

— 3RD EDITION

providing contextual insights about your data assets. These descriptions

at the column and table level can be manually entered, or automatically

described with GenAl by Databricks Assistant. Below is an example of

descriptions and quantifiable characteristics:

Create catalog

&b Data data source with a long, 0]

> [0 catalog_a
> & schema_A
> I Models
~ [ Tables

@ customers

@ loyalty_segments
@ orders

[ promo_prices

[ purchase_orders
[ sales
[ sales_orders
[ seurce_suppliers
suppliers
> I Volumes
» B schema_B
> B schema_C

Catalogs » catalog_A > schema_A »

@ catalog_A.schema_A.orders

r: name@domain.col

Columns Sample data Details

Show only assets | have access lo

Edit  Popularity

Permissions

all  Comment: Add comment

Captured usage of this table over the last 30 days

History

Lineage

Insights

Explanation on how t

» usage is captured

I Frequent notebocks

%) | Frequent dashboards

B Erequent jeined tables

A Frequestusess

v B schema_D Weekly forecast Safety Stock Planning customers userig@databri
> [ catalog_B usey t 1 hema,
> [ catalog_C Veekly forecast loyalty_segments
> [ catalog_D viser@d: al,
» O catalog_F Throughput estimations inventory planning orders user3@databricks.com
> [ caralog_F s tabricks.cont user@dat s.com catalog.schema Queried this table 3 :
> H catalog_6 Purchasing procedures Supply/demand planning promo._prices userd@databricks.
ser@datatiricks.com: user@databricks.cont s Gueried this table,
Operational expensés Customee analysis puechase_orders userS@databricks.com
ser@databricks.com user@databricks.com catalog.schema Queried thig table 38 times
[ Frequent queries
'J"‘.V_fmm?[_f.am?f:?um SELECT COUNT_IF(NOT “profile’ IS NULL)/COUNT(#)%188 “propfile’, COUNT_IF(NOT.. Q@ l
Updated 1 min ago... Re ?a‘ei Pa?ﬁg?a"i?f'lfl SELECT COUNT_IF(NOT JCOUNT (%) %160 “pr » COUNT_IF(NOT.. an |
Delta sharin
9 & 'ff“’q“e"'_‘?'f’f . SELECT COUNT_IF(NOT pro L) /COUNT (+)#180 “profile’, COUNT_IF(NOT.. @ @
Storage credentials R
?_‘?? 'fl“’f;"g’:‘??"‘j“ Last month SELECT COUNT_IF(NOT pro LL)/COUNT (#)#188 “profile’, COUNT_IF(NOT.. ol
External locations
New guery (18) S B — — S P

: databricks Q0 Search data, not cents, and mare.
N
onc Catalog Explorer
Catalog
3 B churn_silver
,
:

sis

o 4.5 - Model Simple

he shat image classification (1)

b (SELECT « FROM *retention_prod’ . sandbox

b (SELECT = FROM *retention_prod’ . sandbox’ .

}20, COUNT(+)) "Current Limit' FROM "retention_grod'= [4

FROM *retention_prod”."sandbox’ . features’ LIMIT 1. [4

fOUNT(+)+180 “user_id", COUNT_IF(NOT “event_id" IS N- [}

.feature. [

feature- [

&

< databricks

Metadata tagging insights: frequent users, notebooks, queries, joins, billing trends and more

O Send

Q

7 v

Metadata tagging insights: details on the

Columns

SampleData  Details  Permissions  History

Frequent users () B Frequent dashboards

e p————
«~ (3 réteritioriZprod
» 8 default
2 B e M.
- & sandbox
v Tables (4]
i events
I [ featwres
[ user_events_jgined
i wsers
> Valumes (1]
> Models (1}
samples
sandborx
shared_catalog
sharing

(mmimlimpin}

snowllake.

Delta Sharing v

External Data v

Lineage

Insights

1 Frequent notebooks

pstoome-+trial@gmail.com.

[ Frequent queries

Rew Count for retention_prod.sandb. .

Quick query for

Percentage Not Null for retention_pr..

Distributionfor column platform

Distribution for column event_id

retention_prod.sand...

cs
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+ Add (®) dbdemos-shared... Serverless -

[ Frequent joined tables

Dash ana)

SELECT COUNT(+) ‘Total Count', LEAST (

SELECT “user_id', “event_id", “platfo

SELECT COUNT_IF(NOT "user_id" IS NULL)
SELECT “platform’, COUNT(+)

“count” PR

SELECT “event_id", COUNT(+) ‘count’ FR

“features” table

Catalogs > ps_dev > sap_na >
fm ps_dev.sap_na.customers A

Owner: samer.zabaneh@databricks.com #

Tags: Addtags

Popularity:

“* Al Suggested Comment Preview

includes information such as
business as it provides a cent

ed repos

busi

+ Accept # Edit
Columns Sample Data Details
Q
Column Type
retailer_code int
retailer_name string
location string

Permissions

analysis of retailer information. The data in this table represents the various retailers associated w
s, their unique codes, names, and locations. It enables the business to track and understand the
distribution and presence of retailers across different locations.

History

Lineage

X

The ‘customers' table in the 'sap_na' schema of the "ps_dev' catalog contains data related to retailers, It
etailer code, retailer name, and location. This table is significant to the
of customer data, allowing for efficient management and

h the

() Send feedback

Insights Quality

Comment

The unique identifier for each retailer.

Tags

The name of the retailer.

The location where the retailer is located.

Use with Bl tools |

X Hide Al suggestions

Databricks Assistant uses GenAl to write

context-aware descriptions of columns and tables


https://www.databricks.com/blog/announcing-public-preview-ai-generated-documentation-databricks-unity-catalog

Having one unified view results in:

= Accelerated innovation: your insights are only as good as your data.
Your analysis is only as good as the data you access. So, streamlining
your data search drives faster and better generation of business insights,

driving innovation.

= Cost reduction through centralized asset cataloging: lowers license
costs (just one vendor solution versus needing many vendors),
lowers usage fees, reduces time to market pains, and enables overall

operational efficiencies.

= It's easier to discover and access all data by reducing data sprawl across

several databases, data warehouses, object storage systems, and more.


https://www.databricks.com/product/machine-learning/lakehouse-monitoring
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It further shows data integrity of predictions and data drift over time:

Performance
metric
100t_mean_squared_error
£ woo
£ 500 ‘
§ ©
e LYy 2Puy Z28Ay SRRy F Al LR e 2400 NP
jes — 26,2083 = o020, 2029
Metrics -
W
Model Performance el
Regression
Data integrity, predictions
1
-
g
score 508
&
Classification B
60:00 63:00 06:00 08:00 1200 15:00 18:00 700 00:00
Sep 28, 2023 Sep 29, 2023
Window
. 1 — percent_nan —— percent_null percent_zeros
s confusion_matrix
Summary statistics
- count Drift, predictions
distinct_count Compare to Metric
quantiles
o min_size Baseline ks_test.statistic
max_size
« avg_size :
« frequent_jtems &
Sos
Categorical 0
- min_jen 00:00 63:00 06:00 08:00 1200 15:00 18:00 7100 00:00
. max_en an 78 22 Window o e
. avgen — Matric

And model performance over time, according to a variety of ML metrics such as
R2, RMSE, and MAPE:

airbnb_pricer_inferencelogs_ali_az Monitoring sre seneaue ) [

92.16 194.02 37,645.55 0.51 0.15

Model Performance

MAE RMSE MSE MAPE R2 Score
Medel performance across models
Accuracy metrics will be calculated if Metric
the label_col has been provided
12_score
Regression
]
-2000
-4000

Classification

00:00 03:00 06:00 03:00 1200 15:00 18:00 2100 00:00
Sep 28, 2023 Sep 29, 2023
Window

Lakehouse Monitoring dashboards show data and Al assets quality

< databricks
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It's one thing to intentionally seek out ML model information when you are looking
for answers, but it is a whole other level to get automated proactive alerts on
errors, data drift, model failures, or quality issues. Below is an example alert for a

potential Pll (Personal Identifiable Information) data breach:

Data Explorer dissor 4 Add (@ Serverless SQL Warchouse Pro
Data A~ Catalogs » retail prod » chum_gold »
i retail_prod.churn_gold.user_churn_analysis & H
o Tags: potential pii 2

Owner: paulroome@databricks.com £ Popularity: w1l Size: 8MiB, S files () Hide comment

Proactive alerts ®—— [®  acrion requiReo: Potential Pil Detected, Please see the LAKEHOUSE MONITORING DASHBOARD Vs

2o DRl s Beemiesinnse., . Mgty y | iROBAR - gy gty vy nlifine.y can

Type Comment Tags
string fo R ®

Example proactive alert of potential unmasked private data

One more thing — you can assess the impact of issues, do a root cause analysis,
and assess the downstream impact by Databrick’s powerful lineage capabilities

— from table-level to column-level.

System tables: metadata information for lakehouse observability

and ensuring compliance


https://www.databricks.com/resources/demos/tutorials/governance/system-tables
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These underlying tables can be queried through SQL or activity dashboards

to provide observability about every asset within the Databricks Intelligence
Platform. Examples include which users have access to which data objects; billing
tables that provide pricing and usage; compute tables that take cluster usage
and warehouse events into consideration; and lineage information between

columns and tables:

= Audit tables include information on a wide variety of UC events. UC
captures an audit log of actions performed against the metastore giving
administrators access to details about who accessed a given dataset and
the actions that they performed.

= Billing and historical pricing tables will include records for all billable usage
across the entire account; therefore you can view your account’s global

usage from whichever region your workspace is in.

= Table lineage and column lineage tables are great because they allow
you to programmatically query lineage data to fuel decision making and
reports. Table lineage records each read-and-write event on a UC table
or path that might include job runs, notebook runs and dashboards
associated with the table. For column lineage, data is captured by reading

the column.

= Node types tables capture the currently available node types with their
basic hardware information outlining the node type name, the number
of vCPUs for the instance, and the number of GPUs and memory for the
instance. Also in private preview are node_utilization metrics on how much

usage each node is leveraging.

= Query history holds information on all SQL commands, i/o performance,

and number of rows returned.

< databricks
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= Clusters table contains the full history of cluster configurations over time

for all-purpose and job clusters.

= Predictive optimization tables are great because they optimize your data
layout for peak performance and cost efficiency. The tables track the
operation history of optimized tables by providing the catalog name,
schema name, table name, and operation metrics about compaction

and vacuuming.

From the catalog explorer, here are just a few of the system tables any of which

can be viewed for more details:

v [ system
v B access
I fm audit

fm column_lineage
fmd table_lineage

~ B billing
i list_prices
fm usage

v B compute
@ clusters
fmd node_types
fm warehouse_events

v B information_schema
fmd catalog_privileges
f@ catalog_provider_share_usage
fm catalog_tags
fm catalogs
fd check_constraints
fmd column_masks
fmd column_tags
f@ columns
fmd constraint_column_usage
fm constraint_table_usage
fd external_location_privileges
fmd external_locations

fm information_schema_catalog_name

fd key_column_usage

—



https://docs.databricks.com/en/administration-guide/account-settings/audit-logs.html
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As an example, drilling down on the "key_column_usage" table, you can see

precisely how tables relate to each other via their primary key:

Catalogs » system » information_schema »
@ system.information_schema.key_column_usage

39

Another example is the "share_recipient_privileges" table, to see who granted

which shares to whom:

Owner: System user / Popularity:
Tags: Add tags

Columns Sample Data Details

Permissions History Lineage Insights Quality

:

rapsteaint, catalog., ropstraint. scbema.. CORSUAINL, NAME. - abla.catalng,, . fable. scbama,. rablg.. namg. reon.oame..  apding)
dbdemos fsi_credit_decisioning credit_decisioning_features_pk dbdemos fsi_credit_decisioning credit_decisioning_features cust_id 1
daiwt-london performance turbine_hourly_features_pk daiwt-london  performance turbine_hourly_features turbine_id 1
daiwt-london performance turbine_hourly_features_pk daiwt-london  performance turbine_hourly_features hourly_timestamp 2
demo iot_predictive_maintenance turbine_hourly_features_pk demo iot_predictive_maintenance turbine_hourly_features hourly_timestamp 2
demo iot_predictive_maintenance turbine_hourly_features_pk demo iot_predictive_maintenance turbine_hourly_features turbine_id 1
mi_workshop demo loan_features_pk mi_workshop  demo loan_features id 1
production dais23 turbine_hourly_features_test1_pk production dais23 turbine_hourly_features_test1 hourly_timestamp 2
production dais23 turbine_hourly_features_test1_pk production dais23 turbine_hourly_features_test1 turbine_id 1
nico_catalog staging test_feature_pk nico_catalog staging test_feature Engine_ID 1

< databricks

Catalogs » system > information_schema »

@ system.information_schema.share_recipient_privileges H
Owner: System user / Popularity:

Tags: Add tags

Columns Sample Data Details Permissions History Lineage Insights Quality

grantor recipient_name share_name privilege_type
e @ databricks.com american_airlines american_airlines SELECT
demo.summit+demo_user2@databricks.com eduardospartner american_airlines SELECT
demo.summit+demo_userd@databricks.com eduardospartner mydemo SELECT
demo.summit+demo_user2@databricks.com external_organization delta_sharing SELECT
demo.summit+demo_userd@databricks.com southwest_airlines test SELECT
demo.summit+demo_userd@databricks.com ateradodatabricks americanairlines SELECT
demo.summit+demo_userd@databricks.com alexterado americanairlines SELECT
e @ databricks.com frank_ext_dais frank_share SELECT
demo.summit+demo_user2@databricks.com weddings_trinkets_co online_sales SELECT
demo.summit+demo_user2@databricks.com holiday_goods_co online_sales SELECT
demo.summit+demo_user2@databricks.com eduardospartner eduardosshare SELECT
e ) databricks.com loan_recipient loan_tx SELECT
el 5 databricks.com southwest_airlines southwest_airlines SELECT
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The example dashboard below shows the number of users, tables, ML models,
percent of tables that are monitored or not, dollars spent on Databricks DBUs

over time, and so much more:

Data+Al Cost Governance (Powered by Al on Databricks)

SDBUs foracasts.and Data Assets Litility TahlpsMolumes
Spend at a glance

t Total SDBUS Farecan SQL $OBL Tables Crasted (Mot

$08US sed tlas fusl moneh
$ 2 1 5 K Forecast A Purpose $D6Us Forecast Model Inference $DEUs Tabies Crested by Trpe
' NFiabin_cata

$ 2 6 Unity Catalog Governance Portal

Dashboard describing diata assets registered in Unity Catalog, slong with active alerts that may require attention

2 96.8% 65,448 | 252
jaels $29 Governed Tables Users ML Models
0 ™% 62.8% 143,275 110
nes ’ Monitored Tables Tables Volumes
o
_ $ 1 2 Active Users Over T Governance & Monitoring Coverage O Time
S— r

v/ \'\J’/\\/ \J

e T
/\ S N S

Governance dashboard showing billing trends, usage, activity and more

< databricks
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What does having a comprehensive data and Al monitoring and
reporting tool result in?

= Reduced risk of non-compliance with better monitoring of internal policies
and security breach potential results in safeguarded reputation and

improved data and Al trust from employees and partners.

= Improved integrity and trustworthiness of data and Al with "one source of

truth’, anomaly detection, and reliability metrics.

Value Levers with Databricks Unity Catalog

If you are looking to learn more about the values Unity Catalog brings to
businesses, the prior Unity Catalog Governance Value Levers blog went
into detail: mitigating risk around compliance; reducing platform complexity
and costs; accelerating innovation; facilitating better internal and external

collaboration; and monetizing the value of data.

CONCLUSION

Governance is key to mitigating risks, ensuring compliance, accelerating
innovation, and reducing costs. Databricks Unity Catalog is unique in the market,
providing a single unified governance solution for all of a company’s data and Al

across clouds and data platforms.

UC Databricks architecture makes governance seamless: a unified view and
discovery of all data assets, one tool for access management, one tool for
auditing for enhanced data and Al security, and ultimately enabling platform-

independent collaboration that unlocks new business values.

Getting started is easy - UC comes enabled by default with Databricks if you are
a new customer! Also if you are on premium or enterprise workspaces, there are

no additional costs.


https://www.databricks.com/blog/unity-catalog-governance-value-levers
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Scalable Spark Structured Streaming for
REST API Destinations

by Art Rask and Jay Palaniappan

Spark Structured Streaming is the widely-used open source engine at the
foundation of data streaming on the Data Intelligence Platform. It can elegantly
handle diverse logical processing at volumes ranging from small-scale ETL to
the largest Internet services. This power has led to adoption in many use cases

across industries.

Another strength of Structured Streaming is its ability to handle a variety of
both sources and sinks (or destinations). In addition to numerous sink types
supported natively (incl. Delta, AWS S3, Google GCS, Azure ADLS, Kafka topics,

Kinesis streams, and more), Structured Streaming supports a specialized sink

that has the ability to perform arbitrary logic on the output of a streaming query:

the foreachBatch extension method. With foreachBatch, any output target

addressable through Python or Scala code can be the destination for a stream.

In this chapter we will share best practice guidance we've given customers who
have asked how they can scalably turn streaming data into calls against a REST
API. Routing an incoming stream of data to calls on a REST APl is a requirement

seen in many integration and data engineering scenarios.

< databricks
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Some practical examples that we often come across are in Operational and
Security Analytics workloads. Customers want to ingest and enrich real-time
streaming data from sources like kafka, eventhub, and Kinesis and publish it into
operational search engines like Elasticsearch, Opensearch, and Splunk. A key
advantage of Spark Streaming is that it allows us to enrich, perform data quality
checks, and aggregate (if needed) before data is streamed out into the search
engines. This provides customers a high quality real-time data pipeline for

operational and security analytics.

The most basic representation of this scenario is shown in Figure 1. Here we have
an incoming stream of data - it could be a Kafka topic, AWS Kinesis, Azure Event
Hub, or any other streaming query source. As messages flow off the stream we

need to make calls to a REST APl with some or all of the message data.

Streaming Source

2B A

DELTA LAKE

Process X

Figure 1

In a greenfield environment, there are many technical options to implement
this. Our focus here is on teams that already have streaming pipelines in Spark
for preparing data for machine learning, data warehousing, or other analytics-
focused uses. In this case, the team will already have skills, tooling and DevOps
processes for Spark. Assume the team now has a requirement to route some
data to REST API calls. If they wish to leverage existing skills or avoid re-working
their tool chains, they can use Structured Streaming to get it done.


https://www.databricks.com/product/data-streaming
https://docs.databricks.com/structured-streaming/foreach.html
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KEY IMPLEMENTATION TECHNIQUES, AND SOME CODE

A basic code sample is included as Exhibit 1. Before looking at it in detail, we will

call out some key techniques for effective implementation.

For a start, you will read the incoming stream as you would any other streaming
job. All the interesting parts here are on the output side of the stream. If your
data must be transformed in flight before posting to the REST API, do that as
you would in any other case. This code snippet reads from a Delta table; as
mentioned, there are many other possible sources.

dfSource = (spark.readStream
.format("delta")
.table("samples.nyctaxi.trips"))

For directing streamed data to the REST API, take the following approach:

1. Use the foreachBatch extension method to pass incoming
micro-batches to a handler method (callRestAPIBatch) which will
handle calls to the REST API.

streamHandle = (dfSource.writeStream
.foreachBatch(callRestAPIBatch)
.start())

< databricks
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2. Whenever possible, group multiple rows from the input on each outgoing
REST API call. In relative terms, making the API call over HTTP will be a
slow part of the process. Your ability to reach high throughput will be
dramatically improved if you include multiple messages/records on the
body of each API call. Of course, what you can do will be dictated by the
target REST API. Some APIs allow a POST body to include many items up
to a maximum body size in bytes. Some APIs have a max count of items on
the POST body. Determine the max you can fit on a single call for the target
APIL. In your method invoked by foreachBatch, you will have a prep step to
transform the micro-batch dataframe into a pre-batched dataframe where
each row has the grouped records for one call to the API. This step is also a
chance for any last transform of the records to the format expected by the
target API. An example is shown in the code sample in Exhibit 1 with the call

to a helper function named preBatchRecordsForRestCall.

3. In most cases, to achieve a desired level of throughput, you will want to
make calls to the API from parallel tasks. You can control the degree of
parallelism by calling repartition on the dataframe of pre-batched data.
Call repartition with the number of parallel tasks you want calling the API.

This is actually just one line of code.

### Repartition pre-batched df for parallelism of API calls
new_df = pre_batched_df.repartition(8)
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a bit of an anti-pattern. Explicit repartitioning with large datasets can if not (response.status_code==200 or response.status_code==201) :

have performance implications, especially if it causes a shuffle between EHEE e (TRCRPEIES SUEE B 1l JICEpEies MReeers 8 it
format(str(response.status_code),response.text))

nodes on the cluster. In most cases of calling a REST API, the data size of

any micro-batch is not massive. So, in practical terms, this technique is

unlikely to cause a problem. And, it has a big positive effect on throughput The six elements above should prepare your code for sending streaming data to

to the API. a REST API, with the ability to scale for throughput and to handle error conditions

. . . cleanly. The sample code in Exhibit 1is an example implementation. Each point
4.Execute a dataframe transformation that calls a nested function dedicated ) )
] ) ] ) _ ) stated above is reflected in the full example.
to making a single call to the REST API. The input to this function will be
one row of pre-batched data. In the sample, the payload column has the
data to include on a single call. Call a dataframe action method to invoke

execution of the transformation.

submitted_df = new_df.withColumn("RestAPIResponseCode",\
callRestApiOnce(new_df["payload"])).\
collect()

5. Inside the nested function which will make one API call, use your libraries
of choice to issue an HTTP POST against the REST API. This is commonly
done with the Requests library but any library suitable for making the
call can be considered. See the callRestApiOnce method in Exhibit 1

for an example.

6. Handle potential errors from the REST API call by using a try..except
block or checking the HTTP response code. If the call is unsuccessful,
the overall job can be failed by throwing an exception (for job retry or
troubleshooting) or individual records can be diverted to a dead letter

queue for remediation or later retry.

< databricks


https://pypi.org/project/requests/

from pyspark.sql.functions import * ### Call helper method to transform df to pre-batched df with one row per REST
from pyspark.sgl.window import Window API call
import math ### The POST body size and formatting is dictated by the target API; this is an
import requests example
from requests.adapters import HTTPAdapter pre_batched_df = preBatchRecordsForRestCall(df, 10)
def preBatchRecordsForRestCall(microBatchDf, batchSize): ### Repartition pre-batched df for target parallelism of API calls
batch_count = math.ceil(microBatchDf.count() / batchSize) new_df = pre_batched_df.repartition(8)
microBatchDf = microBatchDf.withColumn("content", to_json(struct(col("*"))))
microBatchDf = microBatchDf.withColumn("row_number",\ ### Invoke helper method to call REST API once per row in the pre-batched df
row_number().over(Window(). submitted_df = new_df.withColumn("RestAPIResponseCode",\
orderBy(1lit('A")))) callRestApiOnce(new_df["payload"])).collect()
microBatchDf = microBatchDf.withColumn("batch_id", col("row_number") % batch_
count)
return microBatchDf.groupBy("batch_id").\ dfSource = (spark.readStream
agg(concat_ws(",|", collect_ .format("delta")
list("content")).\ .table("samples.nyctaxi.trips"))

alias("payload"))

def callRestAPIBatch(df, batchId):
restapi_uri = "<REST API URL>"

@Qudf("string")

def callRestApiOnce(x):
session = requests.Session()
adapter = HTTPAdapter(max_retries=3)
session.mount('http://', adapter)
session.mount('https://', adapter)

#this code sample calls an unauthenticated REST endpoint; add headers
necessary for auth
headers = {'Authorization':'abcd'}
response = session.post(restapi_uri, headers=headers, data=x, verify=False)
if not (response.status_code==200 or response.status_code==201) :
raise Exception("Response status : {} .Response message : {}".\
format(str(response.status_code), response.text))

return str(response.status_code)



DESIGN AND OPERATIONAL CONSIDERATIONS

Exactly Once vs At Least Once Guarantees

As a general rule in Structured Streaming, using foreachBatch only provides at-
least-once delivery guarantees. This is in contrast to the exactly-once delivery
guarantee provided when writing to sinks like a Delta table or file sinks. Consider,
for example, a case where 1,000 records arrive on a micro-batch and your code
in foreachBatch begins calling the REST API with the batch. In a hypothetical
failure scenario, let’s say that 900 calls succeed before an error occurs and fails
the job. When the stream restarts, processing will resume by re-processing the
failed batch. Without additional logic in your code, the 900 already-processed
calls will be repeated. It is important that you determine in your design whether
this is acceptable, or whether you need to take additional steps to protect

against duplicate processing.

The general rule when using foreachBatch is that your target sink (REST APl in this
case) should be idempotent or that you must do additional tracking to account

for multiple calls with the same data.

Estimating Cluster Core Count for a Target Throughput

Given these techniques to call a REST API with streaming data, it will quickly
become necessary to estimate how many parallel executors/tasks are necessary
to achieve your required throughput. And you will need to select a cluster size.
The following table shows an example calculation for estimating the number of

worker cores to provision in the cluster that will run the stream.

Line H in the table shows the estimated number of worker cores necessary to
sustain the target throughput. In the example shown here, you could provision a
cluster with two 16-core workers or 4 8-core workers, for example. For this type

of workload, fewer nodes with more cores per node is preferred.

Line H is also the number that would be put in the repartition call in foreachBatch,

as described in item 3 above.

Line G is a rule of thumb to account for other activity on the cluster. Even if your
stream is the only job on the cluster, it will not be calling the API 100% of the time.
Some time will be spent reading data from the source stream, for example. The
value shown here is a good starting point for this factor - you may be able to fine

tune it based on observations of your workload.

Obviously, this calculation only provides an estimated starting point for tuning

the size of your cluster. We recommend you start from here and adjust up or


https://docs.databricks.com/structured-streaming/delta-lake.html#delta-table-as-a-sink
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OTHER FACTORS TO CONSIDER

There are other factors you may need to plan for in your deployment. These are
outside the scope of this post, but you will need to consider them as part of
implementation. Among these are:

1. Authentication requirements of the target API: It is likely that the REST
API will require authentication. This is typically done by adding required
headers in your code before making the HTTP POST.

2. Potential rate limiting: The target REST APl may implement rate limiting
which will place a cap on the number of calls you can make to it per

second or minute. You will need to ensure you can meet throughout

46

MEASURED THROUGHPUT TO A MOCKED API WITH
DIFFERENT NUMBERS OF PARALLEL TASKS

To provide representative data of scaling REST API calls as described here, we
ran tests using code very similar to Example 1 against a mocked up REST API that
persisted data in a log.

Results from the test are shown in Table 1. These metrics confirm near-linear
scaling as the task count was increased (by changing the partition count
using repartition). All tests were run on the same cluster with a single 16-core

worker node.

targets within this limit. You'll also want to be ready to handle throttling
errors that may occur if the limit is exceeded.

. Network path required from worker subnet to target API: Obviously, the
worker nodes in the host Spark cluster will need to make HTTP calls to
the REST APl endpoint. You'll need to use the available cloud networking

options to configure your environment appropriately.

.If you control the implementation of the target REST API (e.g., an internal
custom service), be sure the design of that service is ready for the load

and throughput generated by the streaming workload.

< databricks

Apprx
Seconds to Calls API

Rows per |Partitions complete Rows per |Calls per |per thread |Latency

API Call |(threads) |Total calls |processing |second second per second |(ms)
4 21,932 179 122 122 30.5 34
1 8 21,932 88 249 249 31.1 33
16 21,932 49 447 447 27.9 38
4 21,932 48 456 45 1.3 91
10 8 21,932 25 877 87 10.9 100
16 21,932 13 1687 168 10.5 100

Table 1
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REPRESENTATIVE ALL UP PIPELINE DESIGNS

1. Routing some records in a streaming pipeline to REST API (in addition to

persistent sinks)

This pattern applies in scenarios where a Spark-based data pipeline

already exists for serving analytics or ML use cases. If a requirement

emerges to post cleansed or aggregated data to a REST API with low

latency, the technique described here can be used.

Autoloader

ADLS
Container

< databricks
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2. Simple Autoloader to REST API job

This pattern is an example of leveraging the diverse range of sources
supported by Structured Streaming. Databricks makes it simple to
consume incoming near real-time data - for example using Autoloader to
ingest files arriving in cloud storage. Where Databricks is already used for

other use cases, this is an easy way to route new streaming sources to a

REST API.
Autoloader *@p
ADLS Ingest
Container Stream
SUMMARY

We have shown here how structured streaming can be used to send streamed
data to an arbitrary endpoint - in this case, via HTTP POST to a REST API. This
opens up many possibilities for flexible integration with analytics data pipelines.
However, this is really just one illustration of the power of foreachBatch in Spark

Structured Streaming.

The foreachBatch sink provides the ability to address many endpoint types that
are not among the native sinks. Besides REST APIs, these can include databases
via JDBC, almost any supported Spark connector, or other cloud services that are
addressable via a helper library or APl. One example of the latter is pushing data

to certain AWS services using the boto3 library.

This flexibility and scalability enables Structured Streaming to underpin a vast

range of real-time solutions across industries.

If you are a Databricks customer, simply follow the getting started tutorial
to familiarize yourself with Structured Streaming. If you are not an existing

Databricks customer, sign up for a free trial.


https://docs.databricks.com/getting-started/streaming.html
https://www.databricks.com/try-databricks
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https://delta.io/
https://www.databricks.com/product/delta-live-tables
https://kafka.apache.org/
https://docs.confluent.io/platform/current/schema-registry/index.html
https://www.techopedia.com/definition/6813/demultiplexer-dmux
https://docs.databricks.com/en/delta-live-tables/index.html#what-are-delta-live-tables-datasets
https://docs.databricks.com/en/delta-live-tables/index.html#what-are-delta-live-tables-datasets

On the left, we see the DLT Python code. On the right, we see the view and the
tables created by the code. The bottom cell of the notebook on the left operates
on a list of games (GAMES_ARRAY) to dynamically generate the fourteen target

tables we see in the DAG.

Before we go deeper into the example code, let’s take a step back and review

streaming use cases and some streaming payload format options.

STREAMING OVERVIEW

Skip this section if you're familiar with streaming use cases, protobuf,
the schema registry, and Delta Live Tables. In this article, we'll dive into a range
of exciting topics.

= Common streaming use cases: Uncover the diverse streaming data
applications in today’s tech landscape.

= Protocol buffers (Protobuf): Learn why this fast and compact serialization

format is a game-changer for data handling.

= Delta Live Tables (DLT): Discover how DLT pipelines offer a rich, feature-

packed platform for your ETL (Extract, Transform, Load) needs.

= Building a DLT pipeline: A step-by-step guide on creating a DLT pipeline

that seamlessly consumes Protobuf values from an Apache Kafka stream.

= Utilizing the Confluent Schema Registry


https://developers.google.com/protocol-buffers
https://www.databricks.com/product/delta-live-tables
https://en.wikipedia.org/wiki/Extract,_transform,_load
https://docs.confluent.io/platform/current/schema-registry/index.html
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://www.databricks.com/product/data-intelligence-platform
https://www.databricks.com/glossary/predictive-analytics
https://www.databricks.com/blog/2022/06/22/architecting-mlops-on-the-lakehouse.html
https://docs.databricks.com/mlflow/serverless-real-time-inference.html
https://docs.databricks.com/structured-streaming/kafka.html
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OPTIMIZING THE STREAMING PAYLOAD FORMAT

Databricks provides capabilities that help optimize the Al journey by unifying
Business Analysis, Data Science, and Data Analysis activities in a single, governed
platform. In your quest to optimize the end-to-end technology stack, a key
focus is the serialization format of the message payload. This element is crucial
for efficiency and performance. We'll specifically explore an optimized format
developed by Google, known as protocol buffers (or "protobuf"”), to understand

how it enhances the technology stack.

WHAT MAKES PROTOBUF AN OPTIMIZED
SERIALIZATION FORMAT?

Google enumerates the advantages of protocol buffers, including compact data
storage, fast parsing, availability in many programming languages, and optimized

functionality through automatically generated classes.

A key aspect of optimization usually involves using pre-compiled classes in

the consumer and producer programs that a developer typically writes. In a
nutshell, consumer and producer programs that leverage protobuf are "aware” of
a message schema, and the binary payload of a protobuf message benefits from
primitive data types and positioning within the binary message, removing the

need for field markers or delimiters.

WHY IS PROTOBUF USUALLY PAINFUL TO WORK WITH?

Programs that leverage protobuf must work with classes or modules compiled
using protoc (the protobuf compiler). The protoc compiler compiles those
definitions into classes in various languages, including Java and Python. To learn
more about how protocol buffers work, go here.

< databricks
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DATABRICKS MAKES WORKING WITH PROTOBUF EASY

Starting in Databricks Runtime 12.1, Databricks provides native support for
serialization and deserialization between Apache Spark struct.... Protobuf
support is implemented as an Apache Spark DataFrame transformation and
can be used with Structured Streaming or for batch operations. It optionally

integrates with the Confluent Schema Registry (a Databricks-exclusive feature).

Databricks makes it easy to work with protobuf because it handles the protobuf
compilation under the hood for the developer. For instance, the data pipeline
developer does not have to worry about installing protoc or using it to compile

protocol definitions into Python classes.

EXPLORING PAYLOAD FORMATS FOR STREAMING
IOT DATA

Before we proceed, it is worth mentioning that JSON or Avro may be suitable
alternatives for streaming payloads. These formats offer benefits that, for some

use cases, may outweigh protobuf. Let’s quickly review these formats.

JSON

JSON is an excellent format for development because it is primarily human-
readable. The other formats we'll explore are binary formats, which require tools
to inspect the underlying data values. Unlike Avro and protobuf, however, the
JSON document is stored as a large string (potentially compressed), meaning
more bytes may be used than a value represents. Consider the short int value of
8. A short int requires two bytes. In JSON, you may have a document that looks
like the following, and it will require several bytes (~30) for the associated key,

quotes, etc.


https://www.databricks.com/glossary/what-is-unified-ai
https://en.wikipedia.org/wiki/Serialization
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/overview
https://github.com/protocolbuffers/protobuf#protocol-compiler-installation
https://developers.google.com/protocol-buffers/docs/overview#work
https://docs.databricks.com/structured-streaming/protocol-buffers.html
https://docs.databricks.com/structured-streaming/protocol-buffers.html
https://spark.apache.org/docs/2.1.0/sql-programming-guide.html#datasets-and-dataframes
https://www.databricks.com/spark/getting-started-with-apache-spark/streaming
https://docs.confluent.io/platform/current/schema-registry/index.html
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{

"my_short": 8

}

When we consider protobuf, we expect 2 bytes plus a few more for the overhead

related to the positioning metadata.

JSON SUPPORT IN DATABRICKS

On the positive side, JSON documents have rich benefits when used with
Databricks. Databricks Autoloader can easily transform JSON to a structured

DataFrame while also providing built-in support for:

= Schema inference - when reading JSON into a DataFrame, you can supply
a schema so that the target DataFrame or Delta table has the desired
schema. Or you can let the engine infer the schema. Alternatively, schema

hints can be supplied if you want a balance of those features.

= Schema evolution - Autoloader provides options for how a workload

should adapt to changes in the schema of incoming files.

Consuming and processing JSON in Databricks is simple. To create a Spark

DataFrame from JSON files can be as simple as this:

df = spark.read.format("json").load("example.json")
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AVRO

Avro is an attractive serialization format because it is compact, encompasses
schema information in the files themselves, and has built-in database support
in Databricks that includes schema registry integration. This tutorial,
co-authored by Databricks’ Angela Chu, walks you through an example that
leverages Confluent’s Kafka and Schema Registry.

To explore an Avro-based dataset, it is as simple as working with JSON:

df = spark.read.format("avro").load("example.avro")

This datageeks.com article compares Avro and protobuf. It is worth a read if you
are on the fence between Avro and protobuf. It describes protobuf as the "fastest
amongst all.”, so if speed outweighs other considerations, such as JSON and

Avro’s greater simplicity, protobuf may be the best choice for your use case.

EXAMPLE DEMUX PIPELINE

The source code for the end-to-end example is located on GitHub. The example
includes a simulator (Producer), a notebook to install the Delta Live Tables
pipeline (Install_DLT_Pipeline), and a Python notebook to process the data that
is streaming through Kafka (DLT).


https://docs.databricks.com/ingestion/auto-loader/index.html
https://docs.databricks.com/ingestion/auto-loader/schema.html#syntax-for-schema-inference-and-evolution
https://docs.databricks.com/ingestion/auto-loader/schema.html#override-schema-inference-with-schema-hints
https://docs.databricks.com/ingestion/auto-loader/schema.html#how-does-auto-loader-schema-evolution-work
https://docs.databricks.com/structured-streaming/avro-dataframe.html
https://docs.databricks.com/structured-streaming/avro-dataframe.html
https://www.confluent.io/blog/consume-avro-data-from-kafka-topics-and-secured-schema-registry-with-databricks-confluent-cloud-on-azure/
https://dataforgeeks.com/data-serialisation-avro-vs-protocol-buffers/2015/
https://github.com/craig-db/protobuf-dlt-schema-evolution
https://github.com/craig-db/protobuf-dlt-schema-evolution/blob/main/Producer.py
https://github.com/craig-db/protobuf-dlt-schema-evolution/blob/main/Install_DLT_Pipeline.py
https://github.com/craig-db/protobuf-dlt-schema-evolution/blob/main/DLT.py

SCENARIO

Imagine a scenario where a video gaming company is streaming events from
game consoles and phone-based games for a number of the games in its
portfolio. Imagine the game event messages have a single schema that evolves
(i.e., new fields are periodically added). Lastly, imagine that analysts want the data
for each game to land in its own Delta Lake table. Some analysts and Bl tools

need pre-aggregated data, too.
Using DLT, our pipeline will create 1+2N tables:

= One table for the raw data (stored in the Bronze view).

= One Silver Streaming Table for each of the N games, with events streaming
through the Bronze table.

= Each game will also have a Gold Delta table with aggregates based on the


https://docs.databricks.com/en/delta/index.html
https://docs.databricks.com/en/delta-live-tables/index.html#views
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The simplicity of transforming a DataFrame with protobuf payload is thanks to
this function: from_protobuf (available in Databricks Runtime 12.1 and later). In
this article, we don't cover to_protobuf, but the ease of use is the same. The
schema_registry_options are used by the function to look up the schema from

the Confluent Schema Registry.

Delta Live Tables is a declarative ETL framework that simplifies the development
of data pipelines. So, suppose you are familiar with Apache Spark Structured
Streaming. In that case, you may notice the absence of a checkpointLocation
(which is required to track the stream’s progress so that the stream can be
stopped and started without duplicating or dropping data). The absence of the
checkpointLocation is because Delta Live Tables manages this need out-of-the-
box for you. Delta Live Tables also has other features that help make developers
more agile and provide a common framework for ETL across the enterprise. Delta

Live Tables Expectations, used for managing data quality, is one such feature.

SILVER TABLES

The following function creates a Silver Streaming Table for the given game name

provided as a parameter:

def build_silver(gname):
.table(name=f"silver_{gname}_events")
def gold_unified():
return dlt.read_stream("bronze_events").where(F.col("game_name") == gname)
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Notice the use of the @dlt.table annotation. Thanks to this annotation, when
build_silver is invoked for a given gname, a DLT table will be defined that depends
on the source bronze_events table. We know that the tables created by this

function will be Streaming Tables because of the use of dlt.read_stream.

GOLD TABLES

The following function creates a Gold Materialized View for the given game name

provided as a parameter:

def build_gold(gname):
.table(name=f"gold_{gname}_player_agg")
def gold_unified():
return (
dlt.read(f"silver_{gname}_events")
.groupBy(["gamer_id"])
-agg(
F.count("*").alias("session_count"),
F.min(F.col("event_timestamp")).alias("min_timestamp"),
F.max(F.col("event_timestamp")).alias("max_timestamp")

We know the resulting table will be a "Materialized View" because of the use of
dlt.read. This is a simple Materialized View definition; it simply performs a count

of source events along with min and max event times, grouped by gamer_id.


https://docs.databricks.com/en/structured-streaming/protocol-buffers.html
https://www.databricks.com/blog/2022/10/19/deloittes-guide-declarative-data-pipelines-delta-live-tables.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://docs.databricks.com/en/structured-streaming/query-recovery.html
https://docs.databricks.com/en/delta-live-tables/expectations.html
https://docs.databricks.com/en/delta-live-tables/expectations.html
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METADATA-DRIVEN TABLES

i databricks Q) Search data, notebocks, recents, and mong. .

The previous two sections of this article defined functions for creating Silver | Peselpadiag , . _
rotobuf_Games_Demo_craig_lukasik oo reenaent
(Streaming) Tables and Gold Materialized Views. The metadata-driven approach 21512026, 12:33:00 PM - ) Bunning
in the example code uses a pipeline input parameter to create N*2 target tables == -
(one Silver table for each game and one aggregate Gold table for each game). :
B siver_suchre_swe.. o & gold_suchre_play.. &
This code drives the dynamic table creation using the aforementioned i
build_silver and build_gold functions:
B silver_go_fish_eve.. & i gold_go_fish_play.. &
GAMES_ARRAY = spark.conf.get("games").split(",") u & sihen_hoarts_svenis O @ gokd_hearts_piaye...
for game in GAMES_ARRAY:
build_silver(game) .
build_gold(game) B bronze_events & s;l\.»cr_::olni(_mma o ® ;gfli_f:)k-c:r_pla)u.
At this point, you might have noticed that much of the control flow code S o e
data engineers often have to write is absent. This is because, as mentioned
above, DLT is a declarative programming framework. It automatically detects  shver_spades_sve. O & god_spado. iy ©
dependencies and manages the pipeline’s execution flow. Here's the DAG that - .
DLT creates for the pipeline: e e S
Aaing- fan 34 Comphsagd. 4 1
G 5 -
==

A note about aggregates in a streaming pipeline

< databricks
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For a continuously running stream, calculating some aggregates can be very
resource-intensive. Consider a scenario where you must calculate the "median”
for a continuous stream of numbers. Every time a new number arrives in the
stream, the median calculation will need to explore the entire set of numbers
that have ever arrived. In a stream receiving millions of numbers per second, this
fact can present a significant challenge if your goal is to provide a destination
table for the median of the entire stream of numbers. It becomes impractical to
perform such a feat every time a new number arrives. The limits of computation
power and persistent storage and network would mean that the stream would

continue to grow a backlog much faster than it could perform the calculations.

In a nutshell, it would not work out well if you had such a stream and tried to
recalculate the median for the universe of numbers that have ever arrived in the
stream. So, what can you do? If you look at the code snippet above, you may
notice that this problem is not addressed in the code! Fortunately, as a Delta
Live Tables developer, | do not have to worry about it. The declarative framework
handles this dilemma by design. DLT addresses this by materializing results

only periodically. Furthermore, DLT provides a table property that allows the

developer to set an appropriate trigger interval.
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REVIEWING THE BENEFITS OF DLT

Governance
Unity Catalog governs the end-to-end pipeline. Thus, permission to target tables
can be granted to end-users and service principals needing access across any

Databricks workspaces attached to the same metastore.

Lineage
From the Delta Live Tables interface, we can navigate to the Catalog and

view lineage.

Click on a table in the — = e C—:j
DAG. Then click on the — tume —_——
"Target table" link. o



https://docs.databricks.com/en/delta-live-tables/settings.html#pipelines-trigger-interval
https://docs.databricks.com/en/data-governance/unity-catalog/create-metastore.html

Click on the "Lineage"
tab for the table. Then
click on the "See lineage
graph"” link.

Lineage also provides
visibility into other
related artifacts,
such as notebooks,
models, etc.

This lineage helps
accelerate team
velocity by making it
easier to understand
how assets in the
workspace are related.

Catalog Explorer -« B D . 4 add | BewseDBFE | (D e

i protobul_games_deme_craig_lukasik protobuf_deme._craig_lukasik gold_poker_player_agg
Owner: cragiunk Batiiacem & Popularity o

Tagr Adatagn

* A1 Suggested Cammant

B Tabes Tatta nama Linsage dienction

Data Lineage for protobuf_games_demo_craig_lukasik.protobuf_demo_craig_luk:

Sireaming table

protobul_games_demo_craig_lukas o shicesiil
By ik.protabui_deme_craig_lukasik.sil Wbodalizad view
o ver_poker_svents

craig hkasik @databricks com protobul_games_demo._craig_lukas

H ik.pratobuf_demo_craig_lukasik gol

gaene_name string d_poker_player_agg

gaener_id string craig lukasik@databricks.com
:ver‘._ilmslanp lrm:stla!rjn gamur_id string
_5."'“'--:“_ i 5I""9 session_count bigint
R e fin_time stamp timestamg
eol_custom | #ring max_timestamp tmastamp
col_custom_2 £iring

Hide columns

HANDS-OFF SCHEMA EVOLUTION

databricks Q Search data, notebooks, recents, and more...

® Producer % main Python v

File Edit View Run Help

Number of Records per G...

num_records
100 v
15| Workspace
= & profobuf-dit-schema-e:
A =t Sort: Name
[+]=]
& {J cleanup
{1 cCommen
i our
{] Install_DLT_Pipeline
1 Producer
[ README.md.

Last edit was 2 days ago

Number of Versions per G...
num_versions

New cell Ul: ON v

5

-

1

2

3

4

5

wulator -- publich fake messaoe
his notebook to publish messages to Kafka. Usi

You can choose the number of messages to pu
~ You can select the number of versions to gener

The widgets will appear after you run the sixth cell of|
demonstrate schema evolution.

Instructions

Riin Al thecslls anslby G, Yo, zan Genarata mprs:

> W 4 rifiités ags (82) Confluent_kafka g

%pip imstall —upgrade confluent_kafka

Delta Live Tables will detect this as the source stream’s schema evolves, and the

pipeline will restart. To simulate a schema evolution for this example, you would

run the Producer notebook a subsequent time but with a larger value for

num_versions, as shown on the left. This will generate new data where the

schema includes some additional columns. The Producer notebook updates the

schema details in the Confluent Schema Registry.
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When the schema evolves, you will see a pipeline failure like this one: If the Delta Live Tables pipeline runs in Production mode, a failure will result in an
automatic pipeline restart. The Schema Registry will be contacted upon restart
to retrieve the latest schema definitions. Once back up, the stream will continue

with a new run:

databricks  Q

Pipeline event log details % ®

Workflows > Delta Live Tables »

This event is associated with silver_uno_events (Sireaming table). P rotﬂ buf_Games_Demo_craig_l uka si k Provide feedback | s}

Summary  JSON

(¥) ERROR 2024-02-05 14:32:35 EST  flow_progress

Flaw *silver_uno_gvents' has FAILED mare than 2 times and will nat be restaned. £

2/5/2024, 2:32:38 PM - 1 Running

2/5/2024, 2:01:01PM - (%) Failed

Error details (%)

Svasniny L Aarised vie
[ org.apache.spark.sql.streaming. StreamingQueryException: [STREAM_FAILED) Query [id = 93ded7dd-3158-4115 2/5{2024, 12:33:00 P _— - . -
~§8a0-076dF 487805, runid = 57035daT-dd27-40bd-b052-4fbdad1ba4d] terminated with exception: [UNKNOW_FIE i A " O o
LO_EXCEPTION. UNKNOWN_SOURCE] Encountered unknown fields during parsing: Found record with schema id 19008 I ] . R : &
5, which is newer than the schema id 100084 fetched at the start (Set schema.registry.schema.evolution.mo 2/5{2024, 12:02:49 PM e Canceled i *
de to ‘none’ to ignore schema id change. This could result in dropping new fields.), which can be fixed b .
y an automatic retry: false 2/4/2024, 2:45:39 PM - @ Failed g laide Mstarialind view
& org.apache. spark.sql.catalyst, util, UnknownFieldException: [UNKNOWN_FIELD_EXCEPTION, UNSNOWN_SOURCE] Enc 24/2024, 2240149 PM - e Canceled | ¥ gold_go fish_play.. &
ountered unknown fields during parsing: Found recerd with schema id 100085, which is newer than the schem
a id 189484 fetched at the start (Set schema.registry.schema.evolution.mode to 'none’ to ignore schema id . i .
change. This could result in dropping new fields.), which can be fixed by an automatic retry: false 2/4]2024, 2:38:40 PM @ Failed
2/4/2024, 2:32:38 PM - (=) Canceled S e
HAFINDA ATECIE DR DN Cananiad B :‘J::']_," 2 1% R i
e we -
< »
[r— = et e - s v
" bronze_ovents 4 | B silver_poker_events | B gold_poker_player.., <
[ 1 Agreing
000 @ TE
Tirasming tatie Misirisied vie
y o sl CrunmenTvecs T i e ey LT
Raeing - dmm s Raring
s0 we su e
Svastiny L Matarisized view
, B silver_spades_eve.. O . B gokd_spades_play.. o=
Runcing - I 16 Rureing
.0 wd . .
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CONCLUSION

In high-performance loT systems, optimization extends through every layer of Secrets to configure

the technology stack, focusing on the payload format of messages in transit. The following Kafka and Schema Registry connection details (and credentials)
Throughout this article, we've delved into the benefits of using an optimized should be saved as Databricks Secrets and then set within the Secrets notebook
serialization format, protobuf, and demonstrated its integration with Databricks to that is part of the repo:

construct a comprehensive end-to-end demultiplexing pipeline. This approach )
= SR_URL: Schema Registry URL

underlines the importance of selecting the right tools and formats to maximize )
(e.g. https://myschemaregistry.aws.confluent.cloud)

efficiency and effectiveness in loT systems.
= SR_API_KEY: Schema Registry API Key

Instructions for running the example ,
= SR_API_SECRET: Schema Registry API Secret

To run the example code, follow these instructions:
= KAFKA_KEY: Kafka API Key

1. In Databricks, clone this repo: - KAFKA_SECRET: Kafka Secret

https://github.com/craig-db/protobuf-dit-schema-evolution.
= KAFKA_SERVER: Kafka host:port (e.g. mykafka.aws.confluent.cloud:9092)

2. Set up the prerequisites (documented below).
= KAFKA_TOPIC: The Kafka Topic
3. Follow the instructions in the README notebook included in the repo code.
= TARGET_SCHEMA: The target database where the streaming data will be

Prerequisites appended into a Delta table (the destination table is named unified_gold)

1. A Unity Catalog-enabled workspace — this demo uses a Unity Catalog- = CHECKPOINT_LOCATION: Some location (e.g, in DBFS) where the

enabled Delta Live Tables pipeline. Thus, Unity Catalog should be checkpoint data for the streams will be stored

configured for the workspace where you plan to run the demo. o _
Go here to learn how to save secrets to secure sensitive information (e.g.,

2. As of January 2024, you should use the Preview channel for the Delta Live credentials) within the Databricks Workspace: https://docs.databricks.com/

Tables pipeline. The “Install_DLT_Pipeline’ notebook will use the Preview security/secrets/index.html.

channel when installing the pipeline.

3. Confluent account — this demo uses Confluent Schema Registry and
Confluent Kafka.

< databricks


https://github.com/craig-db/protobuf-dlt-schema-evolution
https://myschemaregistry.aws.confluent.cloud/
https://docs.databricks.com/dbfs/index.html
https://docs.databricks.com/structured-streaming/query-recovery.html#enable-checkpointing-for-structured-streaming-queries
https://docs.databricks.com/security/secrets/index.html
https://docs.databricks.com/security/secrets/index.html
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Design Patterns for Batch Processing in

Financial Services
by Eon Retief

Financial services institutions (FSls) around the world are facing unprecedented
challenges ranging from market volatility and political uncertainty to changing
legislation and regulations. Businesses are forced to accelerate digital
transformation programs; automating critical processes to reduce operating
costs and improve response times. However, with data typically scattered
across multiple systems, accessing the information required to execute on these

initiatives tends to be easier said than done.

Architecting an ecosystem of services able to support the plethora of data-
driven use cases in this digitally transformed business can, however, seem

to be an impossible task. This chapter will focus on one crucial aspect of the
modern data stack: batch processing. A seemingly outdated paradigm, we'll see
why batch processing remains a vital and highly viable component of the data
architecture. And we'll see how Databricks can help FSlIs navigate some of the
crucial challenges faced when building infrastructure to support these scheduled

or periodic workflows.
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WHY BATCH INGESTION MATTERS

Over the last two decades, the global shift towards an instant society has forced
organizations to rethink the operating and engagement model. A digital-first
strategy is no longer optional but vital for survival. Customer needs and demands
are changing and evolving faster than ever. This desire for instant gratification

is driving an increased focus on building capabilities that support real-time
processing and decisioning. One might ask whether batch processing is still

relevant in this new dynamic world.

While real-time systems and streaming services can help FSlIs remain agile in
addressing the volatile market conditions at the edge, they do not typically
meet the requirements of back-office functions. Most business decisions are
not reactive but rather, require considered, strategic reasoning. By definition,
this approach requires a systematic review of aggregate data collected over a
period of time. Batch processing in this context still provides the most efficient
and cost-effective method for processing large, aggregate volumes of data.
Additionally, batch processing can be done offline, reducing operating costs and
providing greater control over the end-to-end process.

The world of finance is changing, but across the board incumbents and

startups continue to rely heavily on batch processing to power core business
functions. Whether for reporting and risk management or anomaly detection and
surveillance, FSls require batch processing to reduce human error, increase the

speed of delivery, and reduce operating costs.
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GETTING STARTED

Starting with a 30,000-ft view, most FSIs will have a multitude of data sources
scattered across on-premises systems, cloud-based services and even third-
party applications. Building a batch ingestion framework that caters for all these
connections require complex engineering and can quickly become a burden

on maintenance teams. And that's even before considering things like change
data capture (CDC), scheduling, and schema evolution. In this section, we will
demonstrate how the Databricks Lakehouse for Financial Services (LFS) and its
ecosystem of partners can be leveraged to address these key challenges and
greatly simplify the overall architecture.

The Databricks lakehouse architecture was designed to provide a unified
platform that supports all analytical and scientific data workloads. Figure 1 shows
the reference architecture for a decoupled design that allows easy integration
with other platforms that support the modern data ecosystem. The lakehouse
makes it easy to construct ingestion and serving layers that operate irrespective

of the data’s source, volume, velocity, and destination.

DATA SOURCES INGESTION LAKEHOUSE FOR FINANCIAL SERVICES SERVING

On-Premise GOLD LAYER
- Automated
Reporting
A oAD
30 o QoA -7
Web and Mabile 5 Jha 40 940
Applications ) [+) = o =

— BRONZE LAYER

> gl

c . A q Business Analytics
- urated Feature ggregated I and Interactive
o Raw Entity Data Sels Business Views {1/ Dashboards
— Internet-cf-Things . (\_{j =
= (IoT) Devices 5 J ;
— Automated Data Pipelines T T T
(Batch or Streaming) [ i ]
] Collaborative Data
; ;i Science

Enterprise Data —
Warehouses

® & © .

ML Model Centralised Data Workflow ) ) ,J_.,]
Job Sch Il
Registry Governance Orchestration DB

Eq
e Third-Party APls =
- andServices

| Figure 1: Reference architecture of the Lakehouse for Financial Services
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To demonstrate the power and efficiency of the LFS, we turn to the world of
insurance. We consider the basic reporting requirements for a typical claims
workflow. In this scenario, the organization might be interested in the key metrics

driven by claims processes. For example:

= Number of active policies
= Number of claims

= Value of claims

= Total exposure

= Lossratio

Additionally, the business might want a view of potentially suspicious claims and
a breakdown by incident type and severity. All these metrics are easily calculable
from two key sources of data: 1) the book of policies and 2) claims filed by
customers. The policy and claims records are typically stored in a combination
of enterprise data warehouses (EDWs) and operational databases. The main
challenge becomes connecting to these sources and ingesting data into our
lakehouse, where we can leverage the power of Databricks to calculate the
desired outputs.

Luckily, the flexible design of the LFS makes it easy to leverage best-in-class
products from a range of SaaS technologies and tools to handle specific

tasks. One possible solution for our claims analytics use case would be to use
Fivetran for the batch ingestion plane. Fivetran provides a simple and secure
platform for connecting to numerous data sources and delivering data directly
to the Databricks lakehouse. Additionally, it offers native support for CDC,
schema evolution and workload scheduling. In Figure 2, we show the technical

architecture of a practical solution for this use case.


https://www.databricks.com/solutions/industries/financial-services
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Once the data is ingested and delivered to the LFS, we can use Delta Live

Tables (DLT) for the entire engineering workflow. DLT provides a simple, scalable
declarative framework for automating complex workflows and enforcing data
quality controls. The outputs from our DLT workflow, our curated and aggregated
assets, can be interrogated using Databricks SQL (DB SQL). DB SQL brings data
warehousing to the LFS to power business-critical analytical workloads. Results
from DB SQL queries can be packaged in easy-to-consume dashboards and

served to business users.

STEP 1: CREATING THE INGESTION LAYER

Setting up an ingestion layer with Fivetran requires a two-step process. First,
configuring a so-called destination where data will be delivered, and second,
establishing one or more connections with the source systems. The Partner
Connect interface takes care of the first step with a simple, guided interface to
connect Fivetran with a Databricks Warehouse. Fivetran will use the warehouse
to convert raw source data to Delta Tables and store the results in the Databricks
Lakehouse. Figures 3 and 4 show steps from the Partner Connect and Fivetran

interfaces to configure a new destination.
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Connect to partner X

‘\\\\ Fivetran

Databricks has created resources to connect with Fivetran. To sign in to your Fivetran account,
click Connect to Fivetran.

Email

Connection details v

User FIVETRAN_USER a
Personal access token (O prarnmny

Server Hostname .cloud.databricks.com ]
Port 443 a
HTTP path Jsal{1.0/warehouses/ a

By clicking Connect to Fivetran, you are instructing Databricks to provide all of the above
information in addition to your name and email address to Fivetran. Fivetran's processing of this
information and your use of Fivetran's products and services are governed solely by Fivetran's
terms and conditions and Fivetran's privacy policy and not your agreement with Databricks. Please
contact Fivetran support if you have questions about connecting with Fivetran prior to continuing.

Connect to Fivetran Cancel

Figure 3: Databricks Partner Connect interface for creating a new connection



https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/databricks-sql
https://www.databricks.com/partnerconnect
https://www.databricks.com/partnerconnect
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Catalag

Server Hostname
Port
HTTP Path

Personal Access *
Token

Create Delta tables
in an external
location

Data processing
location

Databricks

Follow the setup guide on the right to connect your data
destination to Fivetran. If you need help accessing the source

system, invite a teammate to complete this step.

Enter only if you have enabled the unity catalog feature for your

warkspace

cloud.databricks.com
443

/sql/1.0/warehouses/

Select if you want Fivetran to create tables in a location external to the

registered Databricks cluster

us

This is where Fivetran will operate and run computation on data.

SAVE & TEST

< databricks

Figure 4: Fivetran interface for confirming a new destination
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For the next step, we move to the Fivetran interface. From here, we can

easily create and configure connections to several different source systems
(please refer to the official documentation for a complete list of all supported
connections). In our example, we consider three sources of data: 1) policy
records stored in an Operational Data Store (ODS) or Enterprise Data Warehosue
(EDW), 2) claims records stored in an operational database, and 3) external data
delivered to blob storage. As such, we require three different connections to be
configured in Fivetran. For each of these, we can follow Fivetran’'s simple guided
process to set up a connection with the source system. Figures 5 and 6 show

how to configure new connections to data sources.

Select your data source Q

200 sources Sort by: Relevance v
iZ  Alldato sources >

&5 salestorce
i Amozon s3
~  Sales Analytics .\ Google Ads
R A 1 Shepify
'i Facebook Ads
Il Google Analytics
F postgresaL RDS
@ Google Cloud Functions
&, Google Drive

47 SQL Server

CANCEL CONTINUE SETUP

Figure 5: Fivetran interface for selecting a data source type



https://www.fivetran.com/connectors
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* Amazon 53

Follow the setup guide on the right to connect your data source to
Fivetran. If you need help accessing the source system, invite a

teammate to complete this step.

Destination schema *

53 ana carnot te changed after you test Appears In your destination d

) for later. the connector or save the for

Destination table *

insurance_demo_s3 and cannot be Appears in your destination a

nector or save the form for later. changed after you test the co

External ID *

designates who can assume the role. The external ID is a string tha

e For more information, click he|

il-us-east-1 Bucket *  e2-demo-gim-insurance-extern

e shouldn't include any prefix or folder Your S3 bucket name. The na

path characters.

Public?

[ need an AWS account for syncing Is the bucket public? (you don'|

ruthlie hockets

Figure 6: Fivetran interface for configuring a data source connection

Connections can further be configured once they have been validated. One
important option to set is the frequency with which Fivetran will interrogate the
source system for new data. In Figure 7, we can see how easy Fivetran has made

it to set the sync frequency with intervals ranging from 5 minutes to 24 hours.
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Amazon S3
s3.insurance_demo_s3

Status Logs Schema Usage Setup (G2 Cennected

Connection Details Test connection Edit connection details

Fivetran Connector ID: township_fiscally
Connected by:

Connected on: 2023
External ID: net_illuminate
Bucket: e2-demo-gtm-insurance-
Bucket Public?: false
Role ARN: arperrereas
Schema: s3
Table: insurance_demo_s3
Folder Path: accidents
Pattern:
Archive Pattern:
File Reading Behavior: Read all files as csv
Compression Behavior: Decompress all files with gzip
Error Handling: Fails a file sync if improperly formatted data detected
Modified File Merge: Overwrite Rows
Escape Character:
Delimiter:

Null Sequence:
Headerless CSV?: false

List Strategy: Lists and retrieves every newly modified file each sync
Connection Method: Directly
Require PrivateLink: false

Settings

Sync Frequency

Set how often Fivetran attempts to replicate data from your Amazon S3 source to your destination.

Figure 7: Overview of configuration for a Fivetran connect

Fivetran will immediately interrogate and ingest data from source systems once
a connection is validated. Data is stored as Delta tables and can be viewed from
within Databricks through the DB SQL Data Explorer. By default, Fivetran will
store all data under the Hive metastore. A new schema is created for each new
connection, and each schema will contain at least two tables: one containing the

data and another with logs from each attempted ingestion cycle (see Figure 8).


https://docs.databricks.com/data/index.html
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Catalogs > hive_metastore »

hive_metastore.insurance_demo_mongodb_master

8 Schema & v
Tables Details Permissions
2 Tables Q

Name Created at Owner

claims

fivetran_audit

Figure 8: Summary of tables created by Fivetran in the Databricks Warehouse for
an example connection

Having the data stored in Delta tables is a significant advantage. Delta Lake
natively supports granular data versioning, meaning we can time travel through
each ingestion cycle (see Figure 9). We can use DB SQL to interrogate specific

versions of the data to analyze how the source records evolved.

hive_metastore.insurance_demo_mongodb_master.fivetran_audit

Figure 9: View of the history showing changes made to the Fivetran audit table

It is important to note that if the source data contains semi-structured or unstructured values, those
attributes will be flattened during the conversion process. This means that the results will be stored in
grouped text-type columns, and these entities will have to be dissected and unpacked with DLT in the
curation process to create separate attributes.
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STEP 2: AUTOMATING THE WORKFLOW

With the data in the Databricks Data Intelligence Platform, we can use Delta
Live Tables (DLT) to build a simple, automated data engineering workflow. DLT
provides a declarative framework for specifying detailed feature engineering
steps. Currently, DLT supports APIs for both Python and SQL. In this example,
we will use Python APIs to build our workflow.

The most fundamental construct in DLT is the definition of a table. DLT
interrogates all table definitions to create a comprehensive workflow for how
data should be processed. For instance, in Python, tables are created using
function definitions and the “dlt.table’ decorator (see example of Python code
below). The decorator is used to specify the name of the resulting table, a
descriptive comment explaining the purpose of the table, and a collection of

table properties.

1 @dlt.table(

2 name = "curated_claims",

3 comment = "Curated claim records",

4 table_properties = {

5 "layer": "silver",

6 "pipelines.autoOptimize.managed": "true",

7 "delta.autoOptimize.optimizeWrite": "true",

8 "delta.autoOptimize.autoCompact": "true"

9 }

10 )

11 def curate_claims():

12 # Read the staged claim records into memory

13 staged_claims = dlt.read("staged_claims")

14 # Unpack all nested attributes to create a flattened table structure
15 curated_claims = unpack_nested(df = staged_claims, schema = schema_claims)
16
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Instructions for feature engineering are defined inside the function body using
standard PySpark APIs and native Python commands. The following example
shows how PySpark joins claims records with data from the policies table to

create a single, curated view of claims.

# Read the staged claim records into memory
curated_policies = dlt.read("curated_policies")
# Evaluate the validity of the claim
curated_claims = curated_claims \
.alias("a") \
.join(
curated_policies.alias("b"),
on = F.col("a.policy_number") == F.col("b.policy_number"),
how = "left"
)\
.select([F.col(f"a.{c}") for ¢ in curated_claims.columns] + [F.col(f"b.{c}").
alias(f"policy_{c}") for ¢ in ("effective_date", "expiry_date")]) \
.withColumn(
# Calculate the number of months between coverage starting and the
claim being filed
"months_since_covered", F.round(F.months_between(F.col("claim_date"),
F.col("policy_effective_date")))
)\
.withColumn(
# Check if the claim was filed before the policy came into effect
"claim_before_covered", F.when(F.col("claim_date") < F.col("policy_
effective_date"), F.1it(1)).otherwise(F.1it(Q))
)\
.withColumn(
# Calculate the number of days between the incident occurring and the
claim being filed
"days_between_incident_and_claim", F.datediff(F.col("claim_date"),
F.col("incident_date"))

)

# Return the curated dataset
return curated_claims
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One significant advantage of DLT is the ability to specify and enforce data quality
standards. We can set expectations for each DLT table with detailed data quality
constraints that should be applied to the contents of the table. Currently, DLT

supports expectations for three different scenarios:

DECORATOR

DESCRIPTION

expect Retain records that violate expectations

expect_or_drop Drop records that violate expectations

expect_or_fail Halt the execution if any record(s) violate constraints

Expectations can be defined with one or more data quality constraints. Each
constraint requires a description and a Python or SQL expression to evaluate.
Multiple constraints can be defined using the expect_all, expect_all_or_drop,
and expect_all_or_fail decorators. Each decorator expects a Python dictionary
where the keys are the constraint descriptions, and the values are the respective
expressions. The example below shows multiple data quality constraints for the

retain and drop scenarios described above.
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1 @dlt.expect_all({

2 "valid_driver_license": "driver_license_issue_date > (current_date() -
3 cast(cast(driver_age AS INT) AS INTERVAL YEAR))",

4 "valid_claim_amount": "total_claim_amount > Q",

5 "valid_coverage": "months_since_covered > 0",

6 "valid_incident_before_claim": "days_between_incident_and_claim > Q"
7 )

8 @dlt.expect_all_or_drop({

9 "valid_claim_number": "claim_number IS NOT NULL",

10 "valid_policy_number": "policy_number IS NOT NULL",

11 "valid_claim_date": "claim_date < current_date()",

12 "valid_incident_date": "incident_date < current_date()",

13 "valid_incident_hour": "incident_hour between @ and 24",

14 "valid_driver_age": "driver_age > 16",

15 "valid_effective_date": "policy_effective_date < current_date()",

17 "valid_expiry_date": "policy_expiry_date <= current_date()"

18 )

19 def curate_claims():

20

We can use more than one Databricks Notebook to declare our DLT tables.
Assuming we follow the medallion architecture, we can, for example, use
different notebooks to define tables comprising the bronze, silver, and gold layers.
The DLT framework can digest instructions defined across multiple notebooks

to create a single workflow; all inter-table dependencies and relationships

are processed and considered automatically. Figure 10 shows the complete
workflow for our claims example. Starting with three source tables, DLT builds a

comprehensive pipeline that delivers thirteen tables for business consumption.
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Results for each table can be inspected by selecting the desired entity. Figure

11 provides an example of the results of the curated claims table. DLT provides a

high-level overview of the results from the data quality controls:
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alized view

Completed - 165

# curated_areas @
® 16M o Completed - 3s
o448 o6
Materialized view
™ aggregated_claim.. @
Completed - 25
® 16K 0
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Figure 11: Example of detailed view for a Delta Live Tables (DLT) table entity with the associated data
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Results from the data quality expectations can be analyzed further by querying
the event log. The event log contains detailed metrics about all expectations
defined for the workflow pipeline. The query below provides an example for
viewing key metrics from the last pipeline update, including the number of

records that passed or failed expectations:

1 SELECT

2 row_expectations.dataset AS dataset,

3 row_expectations.name AS expectation,

4 SUM(row_expectations.passed_records) AS passing_records,
5 SUM(row_expectations.failed_records) AS failing_records
6 FROM

7 (

8 SELECT

9 explode(

10 from_json(

11 details :flow_progress :data_quality :expectations,
12 "array<struct<name: string, dataset: string, passed_records: int, failed_
13 records: int>»"

14 )

15 ) row_expectations

17 FROM

18 event_log_raw

19 WHERE

20 event_type = 'flow_progress

21 AND origin.update_id = '${latest_update.id}'

22 )

23 GROUP BY

24 row_expectations.dataset,

25 row_expectations.name;

Again, we can view the complete history of changes made to each DLT table
by looking at the Delta history logs (see Figure 12). It allows us to understand
how tables evolve over time and investigate complete threads of updates

if a pipeline fails.


https://docs.databricks.com/workflows/delta-live-tables/delta-live-tables-event-log.html#data-quality-metrics
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""" AD HOC ANALYTICS

Columns  SampleData  Detalls  Permissions  History

Version  Timestamp Userid UserName Operation Operation Parameters  Job MNotebook Clusterid  Read Version  Isolation Level IsBlind Append  Operation Metrics User Metadata  Engine Info

Databricks SQL (or DB SQL) provides an efficient, cost-effective data warehouse
Runtimefdit:11.0-
T e MM w0 e o e on top of the Data Intelligence Platform. It allows us to run our SQL workloads
Sea?2db-custom-

directly against the source data with up to 12x better price/performance than

Databricks-
Runtime/dit:11.0-

" ;:if;“: 23 Null Null WRITE {.} Null - Null Null 10 WriteSerializable false r{=} Null :;g;‘;:f“"u' its alternatives'
We can leverage DB SQL to perform specific ad hoc queries against our curated
P ey MM e s M e and aggregated tables. We might, for example, run a query against the curated

local

policies table that calculates the total exposure. The DB SQL query editor

Figure 12: View the history of changes made to a resulting Delta Live Tables (DLT) table entity prOVIdeS a Slmple' easy-to-use interface to build and execute such queries (See

example below).

changes in the source datasets. DLT CDC supports updating tables with slow-

1 SELECT
Changing dimensions (SCD) types ] and 2 2 round(curr.total_exposure, @) AS total_exposure,
3 round(prev.total_exposure, 0) AS previous_exposure
4 FROM
We have one of two options for our batch process to trigger the DLT pipeline. 5 (
We can use the Databricks Auto Loader to incrementally process new data as ° SELECT
7 sum(sum_insured) AS total_exposure
it arrives in the source tables or create scheduled jobs that trigger at set times 8 FROM
X . . i 9 insurance_demo_lakehouse.curated_policies
or intervals. In this example, we opted for the latter with a scheduled job that 10 WHERE
executes the DLT pipeline every five minutes. o expirydate > '{{ date.end }I
12 AND (effective_date <= '{{ date.start }}'
13 OR (effective_date BETWEEN '{{ date.start }}' AND '{{ date.end }}'))
OPERATIONALIZING THE OUTPUTS 1: jO;:‘rr
- . . . . . 17 (
The ability to incrementally process data efficiently is only half of the equation. 18 SELECT
19

Results from the DLT workflow must be operationalized and delivered to
business users. In our example, we can consume outputs from the DLT pipeline
through ad hoc analytics or prepacked insights made available through an

interactive dashboard.

< databricks


https://docs.databricks.com/ingestion/auto-loader/index.html
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We can also use the DB SQL query editor to run queries against different versions
of our Delta tables. For example, we can query a view of the aggregated claims
records for a specific date and time (see example below). We can further use

DB SQL to compare results from different versions to analyze only the changed

records between those states.

SELECT
*

1

2

3 FROM
4 insurance_demo_lakehouse.aggregated_claims_weekly TIMESTAMP AS OF '2022-06-
5 05T17:00:00';

DB SQL offers the option to use a serverless compute engine, eliminating the

need to configure, manage or scale cloud infrastructure while maintaining the
lowest possible cost. It also integrates with alternative SQL workbenches (e.g.,
DataGrip), allowing analysts to use their favorite tools to explore the data and

generate insights.

BUSINESS INSIGHTS

Finally, we can use DB SQL queries to create rich visualizations on top of our
query results. These visualizations can then be packaged and served to end

users through interactive dashboards (see Figure 13).
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Figure 13: Example operational dashboard built on a set of resulting Delta Live Table (DLT) table entities

For our use case, we created a dashboard with a collection of key metrics,
rolling calculations, high-level breakdowns, and aggregate views. The dashboard
provides a complete summary of our claims process at a glance. We also added
the option to specify specific date ranges. DB SQL supports a range of query
parameters that can substitute values into a query at runtime. These query
parameters can be defined at the dashboard level to ensure all related queries

are updated accordingly.

DB SQL integrates with numerous third-party analytical and Bl tools like Power
Bl, Tableau and Looker. Like we did for Fivetran, we can use Partner Connect to
link our external platform with DB SQL. This allows analysts to build and serve
dashboards in the platforms that the business prefers without sacrificing the
performance of DB SQL and the Databricks Lakehouse.
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CONCLUSION

As we move into this fast-paced, volatile modern world of finance, batch
processing remains a vital part of the modern data stack, able to hold its own
against the features and benefits of streaming and real-time services.

We've seen how we can use the Databricks Data Intelligence Platform for
Financial Services and its ecosystem of partners to architect a simple, scalable
and extensible framework that supports complex batch-processing workloads
with a practical example in insurance claims processing. With Delta Live

Tables (DLT) and Databricks SQL (DB SQL), we can build a data platform with
an architecture that scales infinitely, is easy to extend to address changing

requirements and will withstand the test of time.

To learn more about the sample pipeline described, including the infrastructure
setup and configuration used, please refer to this GitHub repository or watch

this demo video.

< databricks



https://github.com/databricks-industry-solutions/dlt-insurance-claims
https://www.youtube.com/watch?v=LkckhRjezxs
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How to Set Up Your First Federated

Lakehouse
by Mike Dobing

Lakehouse Federation in Databricks is a groundbreaking new capability that
allows you to query data across external data sources — including Snowflake,
Synapse, many others and even Databricks itself — without having to move or
copy the data. This is done by using Databricks Unity Catalog, which provides a

unified metadata layer for all of your data.

Lakehouse Federation is a game-changer for data teams, as it breaks down the
silos that have traditionally kept data locked away in different systems. With
Lakehouse Federation, you can finally access all of your data in one place, making

it easier to get the insights you need to make better business decisions.

As always, though, not one solution is a silver bullet for your data integration and
querying needs. See below for when Federation is a good fit, and for when you'd
prefer to bring your data into your solution and process as part of your lakehouse

platform pipelines.
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A few of the benefits of using Lakehouse Federation in Databricks are:

= Improved data access and discovery: Lakehouse Federation makes it
easy to find and access the data you need from your database estate. This
is especially important for organizations with complex data landscapes.

= Reduced data silos: Lakehouse Federation can help to break down data

silos by providing a unified view of all data across the organization.

= Improved data governance: Lakehouse Federation can help to improve
data governance by providing a single place to manage permissions and

access to data from within Databricks.

= Reduced costs: Lakehouse Federation can help to reduce costs by

eliminating the need to move or copy data between different data sources.

If you are looking for a way to improve the way you access and manage your
data across your analytics estate, then Lakehouse Federation in Databricks is a

top choice.

% Databricks Unity Catalog

-u‘\ @ o voger {\ Azure Synapse amazon GOO le of b TR [ [
MysoL” _ &, SQLAZUFE" J Analytics REDSHIFT @ Bia O 9 2‘0"< snowTlake

EXTERNAL DATA SOURCES


https://www.databricks.com/blog/introducing-lakehouse-federation-capabilities-unity-catalog
https://learn.microsoft.com/en-us/azure/databricks/query-federation/#--supported-data-sources
https://www.databricks.com/product/unity-catalog
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REALITY CHECK

While Lakehouse Federation is a powerful tool, it is not a good fit for all use cases.
There are some specific examples of use cases when Lakehouse Federation is
not a good choice:

= Real-time data processing: Lakehouse Federation queries can be
slower than queries on data that is stored locally in the lake. Therefore,
Lakehouse Federation is not a good choice for applications that require
real-time data processing.

= Complex data transformations: Where you need complex
data transformations and processing, or need to ingest and transform
vast amounts of data. For probably the large majority of use cases,
you will need to apply some kind of ETL/ELT process against your data
to make it fit for consumption by end users. In these scenarios, it is still
best to apply a medallion style approach and bring the data in, process
it, clean it, then model and serve it so it is performant and fit for

consumption by end users.

Therefore, while Lakehouse Federation is a great option for certain use cases

as highlighted above, it's not a silver bullet for all scenarios. Consider it an
augmentation of your analytics capability that allows for additional use cases
that need agility and direct source access for creating a holistic view of your data

estate, all controlled through one governance layer.
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SETTING UP YOUR FIRST FEDERATED LAKEHOUSE

With that in mind, let’s get started on setting up your first federated lakehouse in

Databricks using Lakehouse Federation.

For this example, we will be using a familiar sample database — AdventureWorks
— running on an Azure SQL Database. We will be walking you through how to
set up your connection to Azure SQL and how to add it as a foreign catalog

inside Databricks.

PREREQUISITES

To set up Lakehouse Federation in Databricks, you will need the

following prerequisites:
= A Unity Catalog-enabled Databricks workspace with Databricks Runtime
13.1 or above and shared or sin...
= A Databricks Unity Catalog metastore

= Network connectivity from your Databricks Runtime cluster or SQL
warehouse to the target database systems, including any firewall

connectivity requirements, such as here

= The necessary permissions to create connections and foreign catalogs in

Databricks Unity Catalog
= The SQL Warehouse must be Pro or Serverless

= For this demo — an example database such as AdventureWorks to
use as our data source, along with the necessary credentials.

Please see this example.


https://docs.databricks.com/en/clusters/configure.html#create-a-new-cluster
https://docs.databricks.com/en/clusters/configure.html#create-a-new-cluster
https://learn.microsoft.com/en-us/azure/databricks/data-governance/unity-catalog/get-started
https://learn.microsoft.com/en-us/azure/databricks/query-federation/networking
https://docs.databricks.com/en/query-federation/databricks.html#before-you-begin
https://docs.databricks.com/en/query-federation/databricks.html#before-you-begin
https://learn.microsoft.com/en-us/azure/azure-sql/database/single-database-create-quickstart?view=azuresql&tabs=azure-portal#create-a-single-database

EBOOK: THE BIG BOOK OF DATA ENGINEERING — 3RD EDITION

SETUP

Setting up federation is essentially a three-step process, as follows:

= Set up a connection
= Set up a foreign catalog

= Query your data sources

SETTING UP A CONNECTION

We are going to use Azure SQL Database as the test data source with the sample

database AdventureWorksLT database already installed and ready to query:

« ] Login  —+ Mew Query T Open query & Feedback [ Getting started
. ) Query 1
midosgladv (sgladmin) Y
[> Run D Cancel query < Save que ' Export dataas £ Show only Editor
) query p ¥
@ showing limited object explorer here. For 1 select top 180 = from [SalesLT].[Product]

full capability please click here to open
Azure Data Studio.

~[JTables
> B dbo.BuildVersion
> [ dbo.ErrorLog
> [ SalesLT Address
> [ SalesLT.Customer
» B SalesLT.CustomerAddress
> [ SalesLT.Product K
> [l SalesLT ProductCategory e Results  Messages

> [l SalesLT ProductDescription -
~ Search to filter items...

> [ SalesLT ProductModel

> [ SalesLT ProductModelProductDesc - - - ProductiD Name ProductNumber
> Erl SalesLT SalesOrderDetal 680 HL Road Frame - Black, 58 FR-R92B-58
> [ SalesLT SalesOrderHeader
706 HL Road Frame - Red, 58 FR-R92R-58
> [Views
707 Sport-100 Helmet, Red HL-U509-R

» [ stored Procedures

no Conmk 00 Lol Blacl IRTERRTL.T2Y
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We want to add this database as a foreign catalog in Databricks to be able to
query it alongside other data sources. To connect to the database, we need a

username, password and hostname, obtained from my Azure SQL Instance.

With these details ready, we can now go into Databricks and add the connection

there as our first step.

First, expand the Catalog view, go to Connections and click “Create Connection™

Catalog Explorer s 5 rrovide Feeg

Catalog '

External Data ~

Storage Credentlls

External Locatio

Connections

Example query on the source database
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Once added, you can have the option of adding the relevant user permissions
to the objects here, all governed by Unity Catalog (skipped this in this article as
there are no other users using this database):

Catalogs »
Q midosql H Create schema

Connection: 8 midosql, Owner: mike.dobing@databricks.com £

Tags: Add tags

test database for demo Va A
inne Warkenacas o - —
i
ect Principal Privilege 0Obj
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Our external catalog is now available for querying as you would any other catalog

inside Databricks, bringing our broader data estate into our lakehouse:

Catalogs » midosgl

B midosql.saleslt

Crwner: mike.dobangEdatabricks cam oF
Togs: Acd lags

Comment:  Add comment

Tables Yolumes Mooels Functions Details Permissions

O 13 tables

Name Created at Owner
address

CUSLOMT

customeraddrass

A
Droduct

o uc CHTEgory

producidescription

producimodel

BELOrdernaader

vipelallcategarias

viproduclanddescriplion
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QUERYING THE FEDERATED DATA

We can now access our federated Azure SQL Database as normal, straight from

our Databricks SQL Warehouse:

oﬂ': Catalog

]
o X @ New query New query —+

) l midg| ]
» Run (1000) & mido_ctg_dev. & default v
? Foryou  All

1 |SELECT * from midosql.saleslt.product Limit 100

> [0 mido_ctg_dev
> [ midosql

ProductID

And query it as we would any other object:

1 |SELECT * from midosql.saleslt.product limit 168

Results ~ 4+

# ProductIiD Name ProductNumber Color Stan
1 680 HL Road Frame - Black, 58 FR-R92B-58 Black

2 J06 HL Road Frame - Red, 58 FR-R92R-58 Red

3 707 Sport-100 Helmet, Red HL-U509-R Red
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Or even join it to a local Delta table inside our Unity Catalog:

» Run (1000) n E mido_ctg_dev. B default v : () ah_test Serverless v  Save'

1| SELECT p.Name, pm.Name Model from midosql.saleslt.product p INNE
2 | p.ProductModelID - pm.productmodelid

Foryou  All

1 mi R JOIN DelteProductModel
v H mido_ctg_dev R P

> B bronze

» B config
~ B default

> @ dettaproductmode
> B gold

» B information_schema

v E midosgl
» B db_accessadmin
» B db_backupoperator
» B db_datareader

» B informatiogl schema

~ B saleslt

» [l address

)

HL Road Frame - Red, 58 1
Sport-100 Helmet, Black

Mountain Bike Socks, M

Resul
» B mike_dobing_sal_demo
> B petproject # Mam Model
i "C) plnys 1 Higfoad Frame - Black, 58 HL Road Frame
» B raw
e 2 L Road Frame - Red, 58 HL Road Frame
8 siver

Sport-100
Sport-100

Mountain Bike Socks

» B db_datawriter 6 Mountain Bike Socks, L Mountain Bike Socks
> B db_ddladmin 7 Sport-100 Helmet, Blue Sport-100
» B db_denydatareader

= 8  AWCLago Cap Cycling Cap
> B db_denydatawriter
» B db_owner 9 Long-Sleave Logo Jersay, 5 Long-Sleeve Logo Jersey
» B db_securityadm: 10  Long-Sleeve Logo Jersey, M Long-Sleeve Logo Jersey
> B dbo y

= 11 Long-Sleeve Logo Jersey, L Long-Sleeve Logo Jersey
» B guest

12 Long-Sleeve Logo Jersey, XL Long-Slesve Logo Jersey

CONCLUSION

What we've shown here is just scratching the surface of what Lakehouse

Federation can do with a simple connection and query. By leveraging this

offering, combined with the governance and capabilities of Unity Catalog, you

can extend the range of your lakehouse estate, ensuring consistent permissions

and controls across all of your data sources and thus enabling a plethora of new

use cases and opportunities.
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Orchestrating Data Analytics With
Databricks Workflows

by Matthew Kuehn

For data-driven enterprises, data analysts play a crucial role in extracting insights

from data and presenting it in a meaningful way. However, many analysts might
not have the familiarity with data orchestration required to automate their
workloads for production. While a handful of ad hoc queries can quickly turn
around the right data for a last-minute report, data teams must ensure that
various processing, transformation and validation tasks are executed reliably and
in the right sequence. Without the proper orchestration in place, data teams lose
the ability to monitor pipelines, troubleshoot failures and manage dependencies.

As a result, sets of ad hoc queries that initially brought quick-hitting value to the

business end up becoming long-term headaches for the analysts who built them.

Pipeline automation and orchestration becomes particularly crucial as the scale
of data grows and the complexity of pipelines increases. Traditionally, these
responsibilities have fallen on data engineers, but as data analysts begin to
develop more assets in the lakehouse, orchestration and automation becomes a

key piece to the puzzle.

For data analysts, the process of querying and visualizing data should be
seamless, and that's where the power of modern tools like Databricks Workflows
comes into play. In this chapter, we'll explore how data analysts can leverage
Databricks Workflows to automate their data processes, enabling them to focus

on what they do best — deriving value from data.
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THE DATA ANALYST'S WORLD

A

Data analysts play a vital role in the final stages of the data lifecycle. Positioned
at the "last mile," they rely on refined data from upstream pipelines. This could

be a table prepared by a data engineer or the output predictions of machine
learning models built by data scientists. This refined data, often referred to as the
Silver layer in a medallion architecture, serves as the foundation for their work.
Data analysts are responsible for aggregating, enriching and shaping this data to

answer specific questions for their business, such as:

= “How many orders were placed for each SKU last week?”
= “What was monthly revenue for each store last fiscal year?”
= “Who are our 10 most active users?”

These aggregations and enrichments build out the Gold layer of the medallion
architecture. This Gold layer enables easy consumption and reporting for
downstream users, typically in a visualization layer. This can take the form of
dashboards within Databricks or be seamlessly generated using external tools
like Tableau or Power Bl via Partner Connect. Regardless of the tech stack, data
analysts transform raw data into valuable insights, enabling informed decision-

making through structured analysis and visualization techniques.


https://www.databricks.com/product/workflows
https://www.databricks.com/partnerconnect
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THE DATA ANALYST'S TOOLKIT ON DATABRICKS

a

c0 @ Sample TPCH Query +

9
* Run (1000) H hive_metastore.. & default v

(2 dbdemos-s.. Serverless 25 v Save Schedule Share
=
1 [SELECT
2 YEARCo_orderdate) AS year,
3 n_name AS nation,
4| sumMC
5 l_extendedprice * (1 - l_discount) *
6 CCLENGTH(n_name)) / 10@) + (YEAR(o_orderdate) - 1993) / 10¢
7 )]
8

) AS revenue

10 | FROM

11 samples.tpch.customer,
12 samples.tpch.orders,
13 samples.tpch.lineitem,
14 samples.tpch.supplier,
15 samples.tpch.nation,
16 samples.tpch.region

18 |WHERE

Results ~ Revenue by Nation over Time +

BRAZIL
CHINA
FRANCE
JAPAN
JORDAN

258

UNITED KINGDOM
UNITED STATES

208

Revenue

1992 1993 1994 1995 1996 1997 1998

49 rows Refreshed a day ago

In Databricks, data analysts have a robust toolkit at their fingertips to transform
data effectively on the lakehouse. Centered around the Databricks SQL Editor,
analysts have a familiar environment for composing ANSI SQL queries, accessing
data and exploring table schemas. These queries serve as building blocks

for various SQL assets, including visualizations that offer in-line data insights.
Dashboards consolidate multiple visualizations, creating a user-friendly interface

for comprehensive reporting and data exploration for end users.
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Additionally, alerts keep analysts informed about critical dataset changes in

real time. Serverless SQL Warehouses are underpinning all these features, which
can scale to handle diverse data volumes and query demands. By default, this
compute uses Photon, the high-performance Databricks-native vectorized query
engine, and is optimized for high-concurrency SQL workloads. Finally, Unity
Catalog allows users to easily govern structured and unstructured data, machine
learning models, notebooks, dashboards and files in the lakehouse. This cohesive
toolkit empowers data analysts to transform raw data into enriched insights

seamlessly within the Databricks environment.

ORCHESTRATING THE DATA ANALYST'S TOOLKIT
WITH WORKFLOWS

For those new to Databricks, Workflows orchestrates data processing, machine
learning and analytics pipelines in the Data Intelligence Platform. Workflows is

a fully managed orchestration service integrated with the Databricks Platform,
with high reliability and advanced observability capabilities. This allows all users,
regardless of persona or background, to easily orchestrate their workloads in

production environments.

Authoring Your SQL Tasks

Building your first workflow as a data analyst is extremely simple. Workflows

now seamlessly integrates the core tools used by data analysts — queries,

alerts and dashboards — within its framework, enhancing its capabilities through
the SQL task type. This allows data analysts to build and work with the tools they
are already familiar with and then easily bring them into a Workflow as a Task via
the UL


https://docs.databricks.com/en/sql/user/sql-editor/index.html
https://docs.databricks.com/en/sql/user/dashboards/index.html
https://docs.databricks.com/en/sql/user/alerts/index.html
https://www.databricks.com/product/photon
https://www.databricks.com/product/unity-catalog
https://www.databricks.com/product/unity-catalog
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As data analysts begin to chain more SQL tasks together, they will begin to easily

Workflows > Jobs » | Provide feedback
Turbine Report Refresh define dependencies between and gain the ability to schedule and automate
Tasks
SQL-based tasks within Databricks Workflows. In the below example workflow, we
see this in action:
Task_1
i
Q Workflows > Jobs » | Provide feedback [
o Turbine Report Refresh i m
+
Runs Tasks <
Task name* o Task_1
Type* saL -
SQL task® Query ~
SQL query* @ Query v
SQL warehouse* o Dashboard
o Alert
Parameters - File : Data_Available_Alert
Emails © + Ad [ Speed Data Available
mails Add
M dbdemos-sh
Retries & + Add Create_State_Speed_Records
3 Create State Speed Records
Duration threshold + Add . M dbdemos-shared-endpoint
Update_Dashboard_Dataset Dashboard_Refresh
¥ Update Sales Dashboard Dataset B8 Quick Dash rd for dbdemos.lake,
i dbdemos-shared-endpoint . dbdemos-shared-endpoint
Cancel m_

0
-
+ Add task

© No task selected
Choose a task from the graph to edit its properties

< databricks
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Imagine that we have received upstream data from our data engineering team
that allows us to begin our dashboard refresh process. We can define SQL-
centric tasks like the ones below to automate our pipeline:

= Create_State_Speed_Records: First, we define our refreshed data in our
Gold layer with the Query task. This inserts data into a Gold table and then
optimizes it for better performance.

= Data_Available_Alert: Once this data is inserted, imagine we want to
notify other data analysts who consume this table that new records have
been added. We can do this by creating an alert which will trigger when we
have new records added. This will send an alert to our stakeholder group.
You can imagine using an alert in a similar fashion for data quality checks
to warn users of stale data, null records or other similar situations. For

more information on creating your first alert, check out this link.

= Update_Dashboard_Dataset: It's worth mentioning that tasks can be
defined in parallel if needed. In our example, while our alert is triggering
we can also begin refreshing our tailored dataset view that feeds our
dashboard in a parallel query.

= Dashboard_Refresh: Finally, we create a dashboard task type. Once our
dataset is ready to go, this will update all previously defined visualizations
with the newest data and notify all subscribers upon successful
completion. Users can even pass specific parameters to the dashboard
while defining the task, which can help generate a default view of the

dashboard depending on the end user’s needs.

< databricks
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It is worth noting that this example workflow utilizes queries directly written in the
Databricks SQL Editor. A similar pattern can be achieved with SQL code coming
from a repository using the File task type. With this task type, users can execute
.sql files stored in a Git repository as part of an automated workflow. Each time
the pipeline is executed, the latest version from a specific branch will be retrieved
and executed.

Although this example is basic, you can begin to see the possibilities of how
a data analyst can define dependencies across SQL task types to build a

comprehensive analytics pipeline.



https://docs.databricks.com/en/sql/user/alerts/index.html#create-an-alert
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MONITORING YOUR PRODUCTION PIPELINES

While authoring is comprehensive within Databricks Workflows, it is only one part

of the picture. Equally important is the ability to easily monitor and debug your

pipelines once they are built and in production.

Workflows > Jobs »
Turbine Report Refresh ¢ : m
Runs  Tasks 3
Job details
. Job ID 927484213615830 [
Runs i Startdate B
Creator (5) Matthew Kuehn
Aug 28 Sep 13
. <
- P = 33 TEHA] (BY btabtinnins Viimin '° o
B
=] 5
bs O +Tag g Ta:
B | 3 a6s
jeage O 3 upstream tables, 2 downstream tables g Lin{
z
2
:hedules&Triggers Create_State_Speed_Records | R R R R R R Sd
. Data_Available_Alert | B R N ]
15 minutes past the hour, every 12 hours (UTC-04:00 — Eastern ... At
@ Update_Dashboard_Dataset arTeseee
it trigger~~ Pause | Delete 2 Dashboard_Refresh sareeseese
bmpute Go to the latest successful run Ci
Start time RunID Launched Duration Status Run parameters @} @ dbdemos-shared-endpoint
2%-Small, 1 cluster
Sep 13,2023, 12:15.. 11183847058... By scheduler 1mB8s (@ Succee...
View SQL warehouse Swap
Sep 13,2023, 11:59... 63308316108.. By scheduler 1m34s (@ Succee...
Sep 12, 2023, 04:45.. 20985431809.. By scheduler 1m12s (@ Succee...
Job parameters ©
Sep 12, 2023, 04:15... 65218915675.. By scheduler 1m3s (@ Succee..
No job parameters are defined for this job
Aug 28, 2023, 04:56... 248889025 Manually 1m24s (& Succee...
[Edit parameters
Aug 28, 2023, 04:52.. 248877883 Manually 155 (@ Failed
Aug 28, 2023, 04:27... 248854856 Manuall 53s Succee... : .
v v @ Job run settings
Queue ()
Maximum concurrent runs (1)
1
Edit concurrent runs
Duration thresholds (0
Mo thresholds defined
Set duration thresholds
Notifications ©
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Databricks Workflows allows users to monitor individual job runs, offering insights
into task outcomes and overall execution times. This visibility helps analysts
understand query performance, identify bottlenecks and address issues
efficiently. By promptly recognizing tasks that require attention, analysts can

ensure seamless data processing and quicker issue resolution.

When it comes to executing a pipeline at the right time, Databricks Workflows
allows users to schedule jobs for execution at specific intervals or trigger

them when certain files arrive. In the above image, we were first manually
triggering this pipeline to test and debug our tasks. Once we got this to

a steady state, we began triggering this every 12 hours to accommodate for
data refresh needs across time zones. This flexibility accommodates varying
data scenarios, ensuring timely pipeline execution. Whether it's routine
processing or responding to new data batches, analysts can tailor job execution

to match operational requirements.

Late-arriving data can bring a flurry of questions to a data analyst from end
users. Workflows enables analysts and consumers alike to stay informed on
data freshness by setting up notifications for job outcomes such as successful
execution, failure or even a long-running job. These notifications ensure timely
awareness of changes in data processing. By proactively evaluating a pipeline’s
status, analysts can take proactive measures based on real-time information.

As with all pipelines, failures will inevitably happen. Workflows helps manage this
by allowing analysts to configure job tasks for automatic retries. By automating
retries, analysts can focus on generating insights rather than troubleshooting

intermittent technical issues.
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CONCLUSION GET STARTED

In the evolving landscape of data analysis tools, Databricks Workflows bridges = Learn more about Databricks Workflows

the gap between data analysts and the complexities of data orchestration. By = Take a product tour of Databricks Workflows

automating tasks, ensuring data quality and providing a user-friendly interface,

= Create your first workflow with this quickstart guide

Databricks Workflows empowers analysts to focus on what they excel at —
extracting meaningful insights from data. As the concept of the lakehouse
continues to unfold, Workflows stands as a pivotal component, promising a

unified and efficient data ecosystem for all personas.

< databricks



https://www.databricks.com/product/workflows
https://www.databricks.com/resources/demos/tours/data-engineering/databricks-workflows?itm_data=demo_center
https://docs.databricks.com/en/workflows/jobs/jobs-quickstart.html

EBOOK: THE BIG BOOK OF DATA ENGINEERING — 3RD EDITION

Schema Management and Drift Scenarios
via Databricks Auto Loader

by Garrett Peternel

Data lakes notoriously have had challenges with managing incremental data
processing at scale without integrating open table storage format frameworks
(e.g. Delta Lake, Apache Iceberg, Apache Hudi). In addition, schema management
is difficult with schema-less data and schema-on-read methods. With the power
of the Databricks Platform, Delta Lake and Apache Spark provide the essential
technologies integrated with Databricks Auto Loader (AL) to consistently and
reliably stream and process raw data formats incrementally while maintaining

stellar performance and data governance.

AUTO LOADER FEATURES

AL is a boost over Spark Structured Streaming, supporting several additional
benefits and solutions including:

= Databricks Runtime only Structured Streaming cloudFiles source

= Schema drift, dynamic inference and evolution support

= |ngests data via JSON, CSV, PARQUET, AVRO, ORC, TEXT and BINARYFILE
input file formats

= Integration with cloud file notification services (e.g, Amazon SQS/SNS)

= Optimizes directory list mode scanning performance to discover new files
in cloud storage (e.g., AWS, Azure, GCP, DBFS)

< databricks

For further information please visit the official Databricks Auto

Loader documentation.

SCHEMA CHANGE SCENARIOS

In this chapter | will showcase a few examples of how AL handles schema
management and drift scenarios using a public loT sample dataset with
schema modifications to showcase solutions. Schema 1 will contain an loT
sample dataset schema with all expected columns and expected data types.
Schema 2 will contain unexpected changes to the loT sample dataset schema
with new columns and changed data types. The following variables and paths
will be used for this demonstration along with Databricks Widgets to set your

username folder.

%scala
dbutils.widgets.text("dbfs_user_dir", "your_user_name") // widget for account email

val userName = dbutils.widgets.get("dbfs_user_dir")
val rawBasePath = s"dbfs:/user/$userName/raw/"
val repoBasePath = s"dbfs:/user/$userName/repo/"

val jsonSchemalPath rawBasePath + "iot-schema-1l.json"

val jsonSchema2Path = rawBasePath + "iot-schema-2.json"
val repoSchemaPath = repoBasePath + "iot-ddl.json"

dbutils.fs.rm(repoSchemaPath, true) // remove schema repo for demos

SCHEMA 1

%scala
spark.read.json(jsonSchemalPath).printSchema


https://docs.databricks.com/en/ingestion/auto-loader/index.html#what-is-auto-loader
https://docs.databricks.com/en/ingestion/auto-loader/index.html#what-is-auto-loader
https://docs.databricks.com/en/notebooks/widgets.html#databricks-widgets
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N CHiEMA

root

|-- battery_level: long (nullable = true)

|-- c@2_level: long (nullable = true) %scala

|-- cca2: string (nullable = true) // NEW => device_serial_number_device_type, location
|-- cca3: string (nullable = true) spark.read.json(jsonSchema2Path).printSchema

|-- cn: string (nullable = true)
|-- coordinates: struct (nullable = true)

| |-- longitude: double (nullable = true)

|-- date: string (nullable = true) root

|-- device_id: long (nullable = true) |-- alarm_status: string (nullable = true)

|-- device_serial_number: string (nullable = true) |-- battery_level: long (nullable = true)

|-- device_type: string (nullable = true) |-- c02_level: long (nullable = true)

|-- epoch_time_miliseconds: long (nullable = true) |-- date: string (nullable = true)

|-- humidity: long (nullable = true) |-- device_id: long (nullable = true)

|-- ip: string (nullable = true) |-- device_serial_number_device_type: string (nullable = true)
|-- scale: string (nullable = true) |-- epoch_time_miliseconds: long (nullable = true)

|-- temp: double (nullable = true) |-- humidity: double (nullable = true)

|-- timestamp: string (nullable = true) |-- ip: string (nullable = true)

|-- latitude: double (nullable = true)

|-- location: struct (nullable = true)

| |-- cca3: string (nullable = true)
%scala | |-- cn: string (nullable = true)
display(spark.read.json(jsonSchemalPath).1imit(10)) |-- longitude: double (nullable = true)

|-- scale: string (nullable = true)

|-- temp: double (nullable = true)

|-- timestamp: string (nullable = true)

Table « 1 New result table: OFF v
alarm_status battery_level c02_level cca2 ccad cn coordinates date device_id device_serial_num

2 grecn o 920 us Usa null ¥ {"latitude™: 47, "longitude”: 8} 2016-03-20 241 247un29KmR

3 yellow 7 1004 us USA United States ¥ {“latitude™: 42.36, "longitude™: -71.05} 2016-03-20 260 260F7DTEbNz

4 yollow ] 1081 DE DEU Germany ¥ {"latiwde™: 51.45, "longitude”: 7.02}  2016-03-20 298 298hJceoQvO %scala

5 yellow 8 131 us USA United States ¥ {“latitude™: 38.88, "longitude™: -92.4}  2016-03-20 301 30TwHcyNzw diSplay(SpaI‘k.Iead.jSon(jSonSChemalPa‘th).limi‘t(l@))

L} red 1 1484 IN IND India ¥ {"latitude™: 20, "longitude”; 77} 2016-03-20 334 334DUAGAmMBDXI

7 yellow ] 1266 us USA null * {“latitude™: 47, "longitude”: 8} 2016-03-20 349 349gRZSGtcGR

B yellow 1 1085 GE GER United Kingdom ¥ {*latitude™: 51.51, "longitude”: -0.09}  2016-03-20 383 383yNMmIRg0zG

2 red 3 1508 GB GBR United Kingdom ¥ {"latitude™: 53.5, "longitude": -2.19} 2016-03-20 3 3910n3ILA

10 yellow 5 119 KR KOR Republic of Korea ¥ {*latitude™: 37.29, "longitude™: 2016-03-20 455 ASELAJIFUG

127.01}
Table ~ + Mew result table: OFF ~
device_serial_number_device_type epoch_time_miliseconds humidity ip latitude location longitude scale

1 {*2n2Pea":"sensor-pad"} 1458444054119 70 213.161.254.1 62.47 ¥ ["cca2®: "NQ", "ccad®™: "NOR", "cn™: "Morway™} 8.15 Fahre
2 {"12¥2kImDo":"sensor-pad"} 1458444054126 92 68.28.91.22 38 * {"cca2": "US", "cca3": "USA", "cn": "United States”) -97 Fahre
3 {*230lupA”:"meter-gauge”} 1458444054133 47 59.90.65.1 12.98 * {"cca2®: "IN", "cca3d®: “IND®, “cn®: “India®} 77.58 Fahre
a {~36VQueTnEg":"sensor-pad”} 1458444054141 47 213.7.14.1 as ¥ {"cca2": "CY", "cca3d™: "C "Cyprus=} 33 Fahre
5 {*448DeWGL":"sensor-pad"} 1458444054149 83 62.12B.16.74 49.46 * {"cca2": "DE", "cca3": *: "Germany"} 1.1 Fahre
& {"49YesGXwi":"mater-gauge”} 1458444054152 70 170.37.224.1 42.28 ? {"cca2": "US", "ccad™: "United States"} -71.44 Fahre
7 {*Bddjcin*:"sensor-pad*} 1458444054162 55 38.99.198.186 38 ¥ {"cca2": " nited States™} -97 Fahre

8 ("77IKW3IYABSE":"meter-gauge"} 1458444054169 82 218.248.255.30 12.98 ¥ {"cca2"; "IN", "cca3"; "l 77,68 Fahre
° {*B0TY4dWSMH":"sensor-pad"} 1458444054171 87 169.128.0.181 50.01 ¥ ["cca2™: "CA", "cca3™: -87.22 Fahre
10 {*94HLSChD":"sensor-pad"} 1458444054179 66 24.32.26.1 39.33 ¥ {"cca2®; "US", "cca3": =120.25 Fahre

< databricks
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EXAMPLE 1: SCHEMA TRACKING/MANAGEMENT

AL tracks schema versions, metadata and changes to input data over time via
specifying a location directory path. These features are incredibly useful for
tracking history of data lineage, and are tightly integrated with the Delta Lake
transactional log DESCRIBE HISTORY and Time Travel.

%scala

val rawAlDf = (spark

.readStream.format("cloudfiles")

.option("cloudFiles.format", "json")

.option("cloudFiles.schemalocation", repoSchemaPath) // schema history tracking
.load(jsonSchemalPath)

|

%scala
rawAlDf.printSchema

root

|-- alarm_status: string (nullable = true)

|-- battery_level: string (nullable = true)

|-- c02_level: string (nullable = true)

|-- cca2: string (nullable = true)

|-- cca3: string (nullable = true)

|-- cn: string (nullable = true)

|-- coordinates: string (nullable = true)

|-- date: string (nullable = true)

|-- device_id: string (nullable = true)

|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)

|-- epoch_time_miliseconds: string (nullable = true)
|-- humidity: string (nullable = true)

|-- ip: string (nullable = true)

|-- scale: string (nullable = true)

|-- temp: string (nullable = true)

|-- timestamp: string (nullable = true)

|-- _rescued_data: string (nullable = true)
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%scala
display(rawAlDf.1imit(10))

By default (for JSON, CSV and XML file format) AL infers all column data types as
strings, including nested fields.

Table ~ + New result table: OFF ~
alarm_status battery_level c02_level cca2 cca3 en coordinates date device_id device_serial_

1 yellow 3 1082 us USA United States {"latitude":38.0,"longitude*:-97.0} 2016-03-20 62 G2{HBoKr8aiT

2 green 2 zad " wa ' wad'Th = 1 ralitadit A/ od TeGhilnonie el ™ ew i WHE-2D M7 cw i o UL g

3 yellow 7 1004 us UsA United States {"latitude":42.36,"longitude™.-71.05} 2016-03-20 260 260F7DTELNZ

a yellow 9 1081 DE DEU Germany {"latitude":51.45,"longitude™:7.02} 2016-03-20 298 288hJceoQvD

5 yellow 8 1311 us USA United States {"latitude":38.88 "longitude™.-92.4} 2016-03-20 301 301wHcyNzw

& red 1 1484 N IND India {"latitude":20.0,"longitude™:7 7.0} 2016-03-20 334 334DUAgamb)

7 yellow 00 DEEEACHUS 0 USA aul {latitude™A7.0flonailude™8.0) | 2016-03-20 1348 3400RZSGemI B

B yellow 1 1085 GB GBR United Kingdom {"latitude":51.51,"longitude™:-0.09} 2016-03-20 383 383yNMmIRq0

] red 3 1508 GB GBR United Kingdom {"latitude" & longitude®:-2.19} 2016-03-20 3o 3910n3ILA

10 yellow 5 1191 KR KOR Republic of Korea {"latitude":37.29 "longitude™:127.01} 2016-03-20 455 AB5L4J9FUG

Here is the directory structure where AL stores schema versions. These files can

be read via Spark DataFrame API.

Schema Repository

%scala
display(dbutils.fs.ls(repoSchemaPath + "/_schemas"))

Table ~ + New result table: OFF ~

path name size modificationTime

1 petemel@databricks. pofiot-dal json]_ 0 1628 1709306037000 a



https://docs.databricks.com/en/sql/language-manual/delta-describe-history.html
https://docs.databricks.com/en/reference/spark.html#apache-spark-api-reference
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Schema Metadata

%scala
display(spark.read.json(repoSchemaPath + "/_schemas"))

Table v + New result table: OFF v
_corrupt_record dataSchemaJson partitionSchemaJson
1 vl null null
e":"string®,"nullable”:true,*metadata":{}}, {"type":"struct”"fields":[]}

null {"type":"struct™ “fields":[{*name":"alarm_status","
{"name":"battery_level","type":“long","nullable":tn metacdata™:{}},
{"mame":*c02_lavel","type":“long","nullable":true,"metadata":{}},
{"name":"cca2","type":"string","nullable":true,"metadata":(}},{"name":"cca3","type":"string","nullable™ true,"metadata":
{h{"name*:"en" "type":“string","nullable":true," "{}h{"name":" " type”{"type™: "struct","fields":
[{=name™:"latitude","type":"do... o]

EXAMPLE 2: SCHEMA HINTS

AL provides hint logic using SQL DDL syntax to enforce and override dynamic
schema inference on known single data types, as well as semi-structured

complex data types.

%scala

val hintAlDf = (spark

.readStream.format("cloudfiles")

.option("cloudFiles.format", "json")
.option("cloudFiles.schemalocation", repoSchemaPath)
.option("cloudFiles.schemaHints", "coordinates STRUCT<latitude:DOUBLE
longitude:DOUBLE>, humidity LONG, temp DOUBLE") // schema ddl hints
.load(jsonSchemalPath)

)
%scala
hintAlDf.printSchema

< databricks
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root

|-- alarm_status: string (nullable = true)
|-- battery_level: string (nullable = true)
|-- c02_level: string (nullable = true)

|-- cca2: string (nullable = true)

|-- cca3: string (nullable = true)

|-- cn: string (nullable = true)

|-- coordinates: struct (nullable = true)

| |-- latitude: double (nullable = true)

| |-- longitude: double (nullable = true)
|-- date: string (nullable = true)

|-- device_id: string (nullable = true)

|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)
|-- epoch_time_miliseconds: string (nullable = true)
|-- humidity: long (nullable = true)

|-- ip: string (nullable = true)

|-- scale: string (nullable = true)

|-- temp: double (nullable = true)

|-- timestamp: string (nullable = true)

|-- _rescued_data: string (nullable = true)

The schema hints specified in the AL options perform the data type mappings
on the respective columns. Hints are useful for applying schema enforcement
on portions of the schema where data types are known while in tandem with

dynamic schema inference covered in Example 3.

%scala
display(hintAlDf.1imit(10))

Table ~ + New result table: OFF
coordinates date device_id device_serial_number device_type epoch_time_miliseconds humidity ip scale
1 ¥ {"latitude": 38, "longitude™; -7} 2016-03-20 62 G21{HBoKrBaIT sensor-pad 1458444054161 n 151.198.215.1 Fahrenheit
z * {“latitude*: 47, “longitude™: &} R i 2410 AL tunzan TRV mE i AR T SRR e ) IS4 AANEANES e o R4 31 ANG, e .“m
3 ¥ {"latitude": 42.36, "longitude™: -71.05) 2016-03-20 260 260F7DTEbNzZ sensor-pad 1458444054267 57 72.21.168.109 Fahrenheit
a * {“latitude*: 51.45, “longitude: 7.02}  2016-03-20 298 298hJceoCvl sensor-pad 1458444054280 a4 217.76.103.233 Fahrenheit
B ¥ {"latitude": 38.88, "longitude”: -92.4})  2016-03-20 3M 30 TwHeyNzw meter-gauge 1458444054281 26 _159.199.7.15&1 I Fadiranbion
B ¥ {*latitude": 20, "longitude™: 77} LFMGUIed 334" S FU0RGarod sensor-pag * 1 PSR S STLTE ™ sET LFLITAISET rafirenngn
7 ¥ {"latitude": 47, "longitude™: 8} 2016-03-20 349 349gRZSGIEGR meter-gauge 1468444054206 45 195.219.212.9 Fahrenheit
& ¥ {"latitude”: 51.51, "longitude™: -0.08}  2016-03-20 383 3B3yNN G gaug 1458444054308 a6 166.49.222.157 Fahrenheit
L) * {"latiude": 53.5, "longitude™; -2.19} 2016-03-20 3 39710n3ILA meter-gauge 1458444054310 a7 89.21.16.18 Fahrenheit
* {“latitude": 37.29, "longitude™: 2016-03-20 455 A55L4J9FUG therm-stick 1458444054330 64 211.41.134.73 Fahrenheit

127.01}


https://docs.databricks.com/en/ingestion/auto-loader/schema.html#override-schema-inference-with-schema-hints
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EXAMPLE 3: DYNAMIC SCHEMA INFERENCE

AL dynamically searches a sample of the dataset to determine nested structure.
This avoids costly and slow full dataset scans to infer schema. The following
configurations are available to adjust the amount of sample data used on read to

discover initial schema:

1. spark.databricks.cloudFiles.schemalnference.sampleSize.numBytes
(default 50 GB)

2. spark.databricks.cloudFiles.schemalnference.sampleSize.numFiles (default
1000 files)

%scala

val inferAlDf = (spark

.readStream.format("cloudfiles")

.option("cloudFiles.format", "json")
.option("cloudFiles.schemalocation", repoSchemaPath)
.option("cloudFiles.inferColumnTypes", true) // schema inference
.load(jsonSchemalPath)

)
%scala
inferAlDf.printSchema

< databricks

88

root

|-- alarm_status: string (nullable = true)
|-- battery_level: long (nullable = true)
|-- c@2_level: long (nullable = true)

|-- cca2: string (nullable = true)

|-- cca3: string (nullable = true)

|-- cn: string (nullable = true)

|-- coordinates: struct (nullable = true)

| |-- latitude: double (nullable = true)

| |-- longitude: double (nullable = true)
|-- date: string (nullable = true)

|-- device_id: long (nullable = true)

|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)
|-- epoch_time_miliseconds: long (nullable = true)
|-- humidity: long (nullable = true)

|-- ip: string (nullable = true)

|-- scale: string (nullable = true)

|-- temp: double (nullable = true)

|-- timestamp: string (nullable = true)

|-- _rescued_data: string (nullable = true)

AL saves the initial schema to the schema location path provided. This schema
serves as the base version for the stream during incremental processing.
Dynamic schema inference is an automated approach to applying schema

changes over time.

%scala
display(inferAlDf.1imit(10))

Table - + Mew result table: OFF
alarm_status. battery_level c02_level ccaz cca3 on coordinates date device_id device_serial_num

1 yellow 3 1082 us UsSa United States ¥ {"latitude™: 38, "longitude”; -97} 2016-03-20 62 G2fHBoKr8aiT

2 green 0 920 us USA null ¥ {"latitude™: 47, "longitude”: 8} 2016-03-20 24 247un29KmR

3 yellow T 1004 us USA United States ¥ {"latitude™; 42.36, "longitude”; -71.05} 2016-03-20 260 260F7DTEDNZ

4 yellow 9 1081 DE DEU Germany ¥ {"latitude™: 51.45, "longitude": 7.02} 2016-03-20 298 298hJcecv

5 yellow 8 131 us USA United States ¥ {"latitude™: 38.88, "longitude": -92.4)  2016-03-20 301 30 TwHeyNzw

[ red 1 1484 IN IND India ¥ {"latituda™: 20, "longitude®: 77} 2016-03-20 334 334DUAgAmMbX

7 yellow 9 1266 us USA null ¥ ("latitude™: 47, "longitude”: 8} 2016-03-20 349 349gRZSGICGR

8 yellow 1 1085 GB GER United Kingdom ¥ {"latitude™: 51.51, "longitude”: -0.08)  2016-03-20 383 383yNMmiRgDzG

?  red 3 1508 6B GER United Kingdom ¥ {“latitude™; 53.5, “longitude”; -2.19}  2016-03-20 3 391Gn3ILA

e yellow 5 119 KR KOR Republic of Korea :D{;I:‘lll;l;du': 37.29, "longitude": 2016-03-20 455 455L4J9FUG


https://docs.databricks.com/en/ingestion/auto-loader/schema.html#how-does-auto-loader-schema-inference-work
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EXAMPLE 4: STATIC USER-DEFINED SCHEMA

AL also supports static custom schemas just like Spark Structured Streaming.
This eliminates the need for dynamic schema-on-read inference scans, which
trigger additional Spark jobs and schema versions. The schema can be retrieved

as a DDL string or a JSON payload.

DDL

1 %scala
2 inferAlDf.schema.toDDL

String = alarm_status STRING,battery_level BIGINT,c02_level BIGINT,cca2 STRING,cca3
STRING,cn STRING,coordinates STRUCT<latitude: DOUBLE, longitude: DOUBLE> date
STRING,device_id BIGINT,device_serial_number STRING,device_type STRING,epoch_time_
miliseconds BIGINT,humidity BIGINT,ip STRING,scale STRING,temp DOUBLE,timestamp
STRING, _rescued_data STRING

a M WO NP

(-
n
o)
pd

1 %scala
2 spark.read.json(repoSchemaPath + "/_schemas").select("dataSchemaJson").
3 where("dataSchemaJdson is not null").first()

< databricks

89

1 org.apache.spark.sql.Row = [{"type":"struct","fields":[{"name":"alarm_

2 status","type":"string","nullable":true,"metadata":{}},{"name":"battery_level","type":
8 "long","nullable":true,"metadata":{}},{"name":"c02_level","type":"long","nullable":true,
4 "metadata":{}},{"name":"cca2","type":"string","nullable":true,"metadata":{}},{"name":

5 "cca3","type":"string","nullable":true,"metadata":{}},{"name":"cn","type":"string",

6 "nullable":true,"metadata":{}},{"name":"coordinates","type":{"type":"struct","fields":
7 [{"name":"latitude","type":"double","nullable":true,"metadata":{}},{"name":"longitude",
8 "type":"double","nullable":true,"metadata":{}}]},"nullable":true,"metadata":{}},

9 {"name":"date","type":"string","nullable":true,"metadata":{}},{"name":"device_id",

10 "type":"long","nullable":true,"metadata":{}},{"name":"device_serial_number","type":

11 "string","nullable":true,"metadata":{}},{"name":"device_type","type":"string",

12 "nullable":true,"metadata":{}},{"name":"epoch_time_miliseconds","type":"long",

13 "nullable":true,"metadata":{}},{"name":"humidity","type":"long","nullable":true,

14 "metadata":{}},{"name":"ip","type":"string","nullable":true,"metadata":{}},{"name":

15 "scale","type":"string","nullable":true,"metadata":{}},{"name":"temp","type":"double",
16 "nullable":true,"metadata":{}},{"name":"timestamp","type":"string","nullable":true,

17 "metadata":{}}]}]

Here's an example of how to generate a user-defined StructType (Scala) |
StructType (Python) via DDL DataFrame command or JSON queried from AL

schema repository.


https://api-docs.databricks.com/scala/spark/latest/org/apache/spark/sql/types/StructType$.html
https://api-docs.databricks.com/python/pyspark/latest/pyspark.sql/api/pyspark.sql.types.StructType.html
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%scala %scala
import org.apache. spark.sql. types. {DataType, StructType} schemaAlDf.printSchema
val ddl = """alarm_status STRING, battery_level BIGINT,c02_level BIGINT,cca2 STRING,

date STRING, device_id BIGINT, device_serial_number STRING, device_type STRING,

epoch_time_miliseconds BIGINT, humidity BIGINT, ip STRING, scale STRING,temp DOUBLE, root
timestamp STRING, _rescued_data STRING""" |-- alarm_status: string (nullable = true)

|-- battery_level: long (nullable = true)
val ddlSchema = StructType.fromDDL(ddl) |-- c02_level: long (nullable = true)

|-- cca2: string (nullable = true)
val json = """{"type":"struct","fields":[{"name":"alarm_status","type":"string", |-- cca3: string (nullable = true)
"nullable":true,"metadata":{}},{"name":"battery_level","type":"long","nullable": |-- cn: string (nullable = true)
true,"metadata”:{}},{"name":"c02_level","type":"long","nullable":true, "metadata" |-- coordinates: struct (nullable = true)
:{1},{"name":"cca2","type":"string","nullable":true,"'metadata":{}},{"name":"cca3", | |-- latitude: double (nullable = true)
"type":"string","nullable":true,"metadata":{}},{"name":"cn","type":"string","nullable": | |-- longitude: double (nullable = true)
true,"metadata":{}},{"name":"coordinates","type":{"type":"struct","fields": |-- date: string (nullable = true)
[{"name":"latitude","type":"double","nullable":true,"metadata":{}},{"name":"longitude", |-- device_id: long (nullable = true)
“type":"double","nullable":true,"metadata":{}}]},"nullable":true,"metadata":{}},{"name" |-- device_serial_number: string (nullable = true)
:"date","type":"string","nullable":true,"metadata":{}},{"name":"device_id","type": |-- device_type: string (nullable = true)
"long","nullable":true,"metadata":{}},{"name":"deviceserial _number","type":"string", |-- epoch_time_miliseconds: long (nullable = true)
"nullable":true,"metadata":{}},{"name":"device_type","type":"string","nullable":true, |-- humidity: long (nullable = true)
"metadata":{}},{"name":"epochtime_miliseconds","type":"long","nullable":true, "'metadata":{}} |-- ip: string (nullable = true)
,{"name":"humidity","type":"long","nullable":true,"metadata":{}},{"name": |-- scale: string (nullable = true)
"ip","type":"string","nullable":true,"metadata":{}},{"name":"scale","type":"string", |-- temp: double (nullable = true)
"nullable":true,"metadata":{}},{"name":"temp","type":"double","nullable":true, |-- timestamp: string (nullable = true)

"metadata":{}},{"name":"timestamp","type":"string","nullable":true,"metadata":{}}]}"""

val jsonSchema = DataType. fromJson(json).asInstanceOf(StructType] Passing in the schema definition will enforce the stream. AL also provides a

schema enforcement option achieving basically the same results as providing a

_ static StructType schema-on-read. This method will be covered in Example 7.

%scala

.readStream.format("cloudfiles")

.option("cloudFiles.format", "json") %scala

.schema(jsonSchema) // schema structtype definition display(schemaAlDf.1imit(10))
.load(jsonSchemalPath)

)

< databricks
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Table ~ iy e eSO W UET T gy
alarm_status battery_level c02_level cca2 cca3d cn coordinates date device_id device_serial_num
1 yellow 3 1082 us USA United States ¥ {"latitude": 38, "longitude™; -97} 2016-03-20 B2 62(HBoKrBaiT
2 green o 920 us USA null ¥ {"latitude": 47, "longitude™: 8} 2016-03-20 241 241un29KmR
3 yellow 7 1004 us USA United States ¥ {"latitude": 42,36, "longitude™: -71.05} 2016-03-20 260 260F7DTEbnz
a yellow 9 1081 DE DEU Germany * {"latitude": 51.45, "longitude": 7.02} 2016-03-20 208 29BhJceoQuD
5 yallow 8 1311 us UsA United States ¥ {"latitude": 38.88, "longitude™: -92.4}  2016-03-20 30 301wHeyNaw
& red 1 1484 IN IND India ¥ {"latitude": 20, "longitude™: 77} 2016-03-20 334 334DUAgAMEXT
7 yellow 9 1266 us USA null ¥ {"latitude": 47, "longitude™: 8} 2016-03-20 349 349gRZSGcGR
] yellow 1 1085 GB GBR United Kingdom ¥ {“latitude”: 51.51, "longitude®: -0.09}  2016-03-20 383 383yNMmIRq0zG
L] red 3 1508 GB GBR United Kingdom * {"latitude": 53.5, "longitude”; -2.19} 2016-03-20 3 391Qn3ILA
T yellow 5 191 KR KOR Republic of Korea >2{;Iaolilu:ll."'. 37.29, "longitude”: 2016-03-20 455 455L4J9FUG
1 1}

EXAMPLE 5: SCHEMA DRIFT

AL stores new columns and data types via the rescue column. This column
captures schema changes-on-read. The stream does not fail when schema and

data type mismatches are discovered. This is a very impressive feature!

%scala

val driftAlDf = (spark

.readStream.format("cloudfiles")

.option("cloudFiles.format", "json")

.option("cloudFiles.schemalocation", repoSchemaPath)
.option("cloudFiles.inferColumnTypes", true)
.option("cloudFiles.schemaEvolutionMode", "rescue") // schema drift tracking
.load(rawBasePath + "/*.json")

)
%scala
driftAlDf.printSchema

< databricks
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root

|-- alarm_status: string (nullable = true)
|-- battery_level: long (nullable = true)
|-- c@2_level: long (nullable = true)

|-- cca2: string (nullable = true)

|-- cca3: string (nullable = true)

|-- cn: string (nullable = true)

|-- coordinates: struct (nullable = true)

| |-- latitude: double (nullable = true)

| |-- longitude: double (nullable = true)
|-- date: string (nullable = true)

|-- device_id: long (nullable = true)

|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)
|-- epoch_time_miliseconds: long (nullable = true)
|-- humidity: long (nullable = true)

|-- ip: string (nullable = true)

|-- scale: string (nullable = true)

|-- temp: double (nullable = true)

|-- timestamp: string (nullable = true)

|-- _rescued_data: string (nullable = true)

The rescue column preserves schema drift such as newly appended columns
and/or different data types via a JSON string payload. This payload can be
parsed via Spark DataFrame or Dataset APIs to analyze schema drift scenarios.
The source file path for each individual row is also available in the rescue column

to investigate the root cause.

%scala
display(driftAlDf.where("_rescued_data is not null").limit(10))


https://docs.databricks.com/en/ingestion/auto-loader/schema.html#what-is-the-rescued-data-column
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New result table: OFF v

seconds humidity ip scale temp timestamp _rescued_data

null

null
2

null
3

ol
N

il
3

null
®

null
7

null
[

null
]

nuil
w0

213.161.254.1 Fahrenhait 51.8 2016-03-2003:20:54.119 {-iocation™:{~cca3d " NOR" Cn" " Nanway " eea2 " NG} Ialiude ™ 62,47 “device_serial_number_device_type":

68.28.91.22 Fahrenheit 536 2016-03-20 03:20:54.126 " en”;"United States”,"cca2™;"US"}"latiude": 38,0, device_serial_number_device_type”™:"
humidity":92.0,%_fila_path*:* fgarrait. petorneld
"}
59.90.65.1 Fahrenheit 734 2016-03-20 03:20:64.133 en®Indio,"ccal " "IN latitude™: 12.98,"device_serial_number_device_type®™"
77.58,"humidity":47.0,"_tile_path":"dbfs:juser/garrett p I c ema-
2. jsenfiot_schema,_: H
2137141 Fahrenheit 6.2 2016-03-20 03:20064.141 {"location™:{"cca3" “on:*Cyprus”, ecal " CY ] latitude®:35.0, device_serial_number_device_type™"
0,"humidity*:47.0."_file_path™:"dbfs:fuserigarrett peternel@databricks. comraw/iol-sehema-
62.128.16.74 Fahrenheit 806 2016-03-20 03:20:54.149
A"} longitude™: 1.1, humidity™.63.0,"_file_path®:"dbls-fusergarmett peternel@databricks. comfrawfiol-schema-
2 jsonfiot_schema_: "
170.37.224.1 Fahrenhait 77 2016-03-20 03:20:54.152 {"location":{"cea3":"USA""cn™:"United States”, "cca2™:"US"} "latitude":42 28, "device_serial_number_device_type™:"
{1 49¥esGXwt|"|"meter-
gaugel} longitude:-71.44," humidity™:70.0,"_file_path™:"dbfs:juser/garrett peternel@datobricks.comjrawfiot-schema
2 juor _2 jeon”,
38.99.198.186 Fahrenheit 536 2016-03-20 03:2(:54.162 {"location™:{"ccad";"USA" cn":"United States”"cca2";"US") "latitude":38,0,"device_serial_number_device_type™:"*
{\"eadjein|"4"sensor-
pady") " lengitude®;=87.0,"humidity 55,0, _file_paih:“dbis:/ 5 peter schema
218.248.255.30 Fahrenhait 626 2016-03-20 03:20:54.169 *en®:*India®,"cca2": "IN}, "latitude:12.98,"device_serial_number_device_type®™"
8,"humidity":82.0,"_file_path™:"dbfs user/garrets peterne| @databricks. schema-
}
159.128.0.181 Fahrenheit 896 2016-03-20 03:20:54.17
a-
24.32.26.1 Fahrenheit 824 2016-03-20 03:20:54.179 {"location”:{"ccad":"USA","cn™:"United States”,"cca2"™:"US"} "latitude":39.33,"device_serial_nsmber_device_type™:"
(" 24HLSIChDV™\"sensor-
pad\"}" "longitude":-120, 25, humidity":66.0,"_file_path":"dble juserfgarrett bricks. comjranfiot-cchama-

2.jsonjiot_schema_2.json"}

EXAMPLE 6: SCHEMA EVOLUTION

AL merges schemas as new columns arrive via schema evolution mode. New

schema JSON will be updated and stored as a new version in the specified

schema repository location.

%scala

val evolveAlDf = (spark

.readStream.format("cloudfiles")

.option("cloudFiles.format", "json")

.option("cloudFiles.schemalLocation", repoSchemaPath)

.option("cloudFiles.inferColumnTypes", true)

.option("cloudFiles.schemaEvolutionMode", "addNewColumns") // schema evolution
.load(rawBasePath + "/*.json")

< databricks
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%scala
evolveAlDf.printSchema // original schema

root

|-- alarm_status: string (nullable = true)

|-- battery_level: long (nullable = true)

|-- c02_level: long (nullable = true)

|-- cca2: string (nullable = true)

|-- cca3: string (nullable = true)

|-- cn: string (nullable = true)

|-- coordinates: struct (nullable = true)

| |-- latitude: double (nullable = true)

| |-- longitude: double (nullable = true)

|-- date: string (nullable = true)

|-- device_id: long (nullable = true)

|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)

|-- epoch_time_miliseconds: long (nullable = true)
|-- humidity: long (nullable = true)

|-- ip: string (nullable = true)

|-- scale: string (nullable = true)

|-- temp: double (nullable = true)

|-- timestamp: string (nullable = true)

|-- _rescued_data: string (nullable = true)
%scala

display(evolveAlDf.1imit(1@)) // # stream will fail

AL purposely fails the stream with an UnknownFieldException error when it
detects a schema change via dynamic schema inference. The updated schema
instance is created as a new version and metadata file in the schema repository

location, and will be used against the input data after restarting the stream.


https://docs.databricks.com/en/ingestion/auto-loader/schema.html#how-does-auto-loader-schema-evolution-work
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1 %scala 1 root
2 val evolveAlDf = (spark 2 |-- alarm_status: string (nullable = true)
3 .readStream.format("cloudfiles") 3 |-- battery_level: long (nullable = true)
4 .option("cloudFiles.format", "json") 4 |-- c@2_level: long (nullable = true)
5 .option("cloudFiles.schemalLocation", repoSchemaPath) 5 |-- cca2: string (nullable = true)
6 .option("cloudFiles.inferColumnTypes", true) 6 |-- cca3: string (nullable = true)
7 .option("cloudFiles.schemaHints", "humidity DOUBLE") 7 |-- cn: string (nullable = true)
8 .option("cloudFiles.schemaEvolutionMode", "addNewColumns") // schema evolution 8 |-- coordinates: struct (nullable = true)
9 .load(rawBasePath + "/*.json") 9 | |-- latitude: double (nullable = true)
10 ) 10 | |-- longitude: double (nullable = true)
11 |-- date: string (nullable = true)
12 |-- device_id: long (nullable = true)
14 |-- device_type: string (nullable = true)
1 %scala 15 |-- epoch_time_miliseconds: long (nullable = true)
2 evolveAlDf.printSchema // evolved schema 16 |-- humidity: double (nullable = true)
17 |-- ip: string (nullable = true)
18 |-- scale: string (nullable = true)
19 |-- temp: double (nullable = true)
20 |-- timestamp: string (nullable = true)
21 |-- device_serial_number_device_type: string (nullable = true)
22 |-- latitude: double (nullable = true)
23 |-- location: struct (nullable = true)
24 | |-- cca2: string (nullable = true)
25 | |-- cca3: string (nullable = true)
26 | |-- cn: string (nullable = true)
27 |-- longitude: double (nullable = true)
28 |-- _rescued_data: string (nullable = true)

AL has evolved the schema to merge the newly acquired data fields.

1 %scala
2 display(evolveAlDf.where("device_serial_number_device_type is not null").limit(10))

< databricks
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Table ~ + New result table: OFF ~
temp timestamp device_serial_number_device_type Iatitude location longitude _rescued_data
1 51.8 2016-03-20 03:20:54.119 {"2n2Pea":"sensor-pad") 62.47 ¥ {"cca2": "NO", "cca3": "NOR", "en™: "Norway"} 615 il
2 53.6 2016-03-20 03:20:54.126 {*12¥2kim0o":"sensor-pad") a8 ¥ ["cca2®: "US", "cca3®: "USAY, "en®: *United States”} -07 null
3 73.4 2016-03-20 03:20:54.133 {~230lupA™ " meter-gauge"} 12.98 * {"cca2": "IN", “cca3": "IND", "cn”; “India"} 77.58 mull
a 75.2 2016-03-20 03:20:54.141 {~36VQuBfnEg":"sensor-pad"} 35 * {"cca2": "CY", "cca3™: “CYP", “cn™: “Cyprus”} 33 null
5 80.6 2016-03-20 03:20:54,149 {"44BDeWGL": "sensor-pad-} 49.46 * {"cca2": "DE", "ccad": "DEU", “cn": "Germany”} 1.1 null
& 77 2016-03-20 03:20:54.152 {"a9YesGXwt":"meter-gauge”} 42.28 ¥ {"cca2": "US", "cca3™: "USA", "en™: "United States™} -71.44 null
7 53.6 2016-03-20 03:20:54.162 {"G4djcin:"sensor-pad”} a8 ¥ {"ccaZ”: "US", "ccad": "USAY, "en”: "United States™}  -97 null
8 62.6 2016-03-20 03:20:54.169 {*77IKW3YABS5":"metar-gauge"} 12.98 ¥ {"cca2": "IN", "cca3®: "IND, "cn": "India"} 77.58 null
L] 89.6 2016-03-2003:20:54.171 {"80TY4dWSMH":"sensor-pad"} 50.01 ¥ {"ccal®: "CA", "cca3": "CAN", "en': "Canada”} -97.22 null
0t 82.4 2016-03-20 03:20:54.179 {"94HLYChD":"sensor-pad"} 309.33 ¥ {"cca2": "US", "ecald”: "USA', "en”: "United States”} -120.25 null

The newly merged schema transformed by AL is stored in the original schema
repository path as version 1 along with the base version O schema. This history is
valuable for tracking changes to schema over time, as well as quickly retrieving

DDL on the fly for schema enforcement.

Schema Repository

%scala
display(dbutils.fs.ls(repoSchemaPath + "/_schemas"))

Table -  + New result table: OFF ~
path 4 name size meodificationTime

1 dbfs:juserfgarrett.peter L pofiot-ddl json/_ 0 0 1628 1709325391000

2z dbfs:fuserfgarrett.peter -ddl.json/_: 1 1 2209 1709325578000 5]

Schema Metadata

%scala
display(spark.read.json(repoSchemaPath + "/_schemas"))
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Table -~ + New result table: OFF ~

_corrupt_record dataSchemaJson partitionSchemaJson

1 v1 null aull

null {"type™:"struct” "fields":[["name":"alarm_status” "type™:"string" "nullable":true,"metadata®:(}},
{"name":"battery_level","type"”:“long", "nullable”;true,"metadata™:{}},
{"name":"c02_level™,"type":"long™,"nullable":true, "rmetadata":{}},

{"type”:"struct” fields™ (]}

{14 "name":"cn" "type™: "string”,"nullable*:true,"metadata”:(}},{"name": "coordinates", type":{ "type":struct ", fields":
[{"name":"latitude","typa":"do...

3 v null null

gl {"type™:"struct”"fields": [{"name":"alarm_status","type™:"string", " nullable:true,"metadata™(}},
{"name":"battery_level","type":"long","nullable™:true,"metadata™:{}},
{"name":*c02_le type*:*long®,*nullable*:true *metadata®:{}},
{"name":"cca2","type":"string”,"nullable":true, metadata™:{}},{"name":"cca3" "type™:“string”, "nullable:true,"metadata™;
{1, {"name":"cn","type™:"string","nullable":true,"metadata”:(}},{"name":"coordinates" "type":{"type":"struct ", "fialds":
[{"name":"latitude","type":"do... 3

{"type”:"struct”fields™[1}

Schema evolution can be a messy problem if frequent. With AL and Delta Lake

it becomes easier and simpler to manage. Adding new columns is relatively
straightforward as AL combined with Delta Lake uses schema evolution to
append them to the existing schema. Note: the values for these columns will be
NULL for data already processed. The greater challenge occurs when the data
types change because there will be a type mismatch against the data already
processed. Currently, the "safest” approach is to perform a complete overwrite

of the target Delta table to refresh all data with the changed data type(s).
Depending on the data volume this operation is also relatively straightforward if
infrequent. However, if data types are changing daily/weekly then this operation is
going to be very costly to reprocess large data volumes. This can be an indication

that the business needs to improve their data strategy.

Constantly changing schemas can be a sign of a weak data governance strategy
and lack of communication with the data business owners. Ideally, organizations
should have some kind of SLA for data acquisition and know the expected
schema. Raw data stored in the landing zone should also follow some kind of pre-
ETL strategy (e.g., ontology, taxonomy, partitioning) for better incremental loading
performance into the lakehouse. Skipping these steps can cause a plethora of
data management issues that will negatively impact downstream consumers
building data analytics, Bl, and Al/ML pipelines and applications. If upstream
schema and formatting issues are never addressed, downstream pipelines will
consistently break and result in increased cloud storage and compute costs.
Garbage in, garbage out.
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EXAMPLE 7: SCHEMA ENFORCEMENT

AL validates data against the linked schema version stored in repository location
via schema enforcement mode. Schema enforcement is a schema-on-write
operation, and only ingested data matching the target Delta Lake schema will

be written to output. Any future input schema changes will be ignored, and AL
streams will continue working without failure. Schema enforcement is a very
powerful feature of AL and Delta Lake. It ensures only clean and trusted data will
be inserted into downstream Silver/Gold datasets used for data analytics, Bl, and

AI/ML pipelines and applications.

%scala

val enforceAlDf = (spark

.readStream.format("cloudfiles")

.option("cloudFiles.format", "json")

.option("cloudFiles.schemalocation", repoSchemaPath)
.option("cloudFiles.schemaEvolutionMode", "none") // schema enforcement
.schema(jsonSchema)

.load(rawBasePath + "/*.json")

)
%scala
enforceAlDf.printSchema
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root

|-- alarm_status: string (nullable = true)

|-- battery_level: long (nullable = true)

|-- c@2_level: long (nullable = true)

|-- cca2: string (nullable = true)

|-- cca3: string (nullable = true)

|-- cn: string (nullable = true)

|-- coordinates: struct (nullable = true)

| |-- latitude: double (nullable = true)

| |-- longitude: double (nullable = true)

|-- date: string (nullable = true)

|-- device_id: long (nullable = true)

|-- device_serial_number: string (nullable = true)
|-- device_type: string (nullable = true)

|-- epoch_time_miliseconds: long (nullable = true)
|-- humidity: long (nullable = true)

|-- ip: string (nullable = true)

|-- scale: string (nullable = true)

|-- temp: double (nullable = true)

|-- timestamp: string (nullable = true)

Please note the rescue column is no longer available in this example because
schema enforcement has been enabled. However, a rescue column can still

be configured separately as an AL option if desired. In addition, schema
enforcement mode uses the latest schema version in the repository to enforce
incoming data. For older versions, set a user-defined schema as explained

in Example 4.

%scala
display(enforceAlDf.1imit(10))

Table ~ + New rosult table: OFF v
alarm_status battery_level c02_level ccal cca3 en coordinates date device_id device_serial_num

1 vellow 3 1082 us USA United States ¥ {"latitude": 38, “longitude™: -87} 2016-03-20 62 B2fHBoKr8aiT

2 areen o az0 us USA nul ¥ {"latitude”: 47, “longitude®: 8} 2016-03-20 241 241un?9KmR

3 yellow 7 1004 us usa United States ¥ {"latitude™: 42 36, "longitude™: -71.05} 2016-03-20 260 260F7DTEbNZ

a yellow 9 1081 DE DEV Germany ¥ ["latitude™: 51.45, "longitude™: 7.02} 2016-03-20 298 298hJceoQvl

8 yellow 8 LERR] us USA United States ¥ {"latitude”: 3888, "longitude": -92.4}  2016-03-20 30 301wHeyNzw

6 red 1 1484 ] IND India * {“latitude™: 20, “longitude®: 77} 2016-03-20 334 334DUAGAMbXI

7 yellow ] 1266 us Usa null * {“latitude”: 47, “longitude”; &} 2016-03-20 349 349gRZSGLCGR

L] yellow 1 1085 GB GER United Kingdom ¥ {"latitude”: 51,51, "longitude™: -0.09}  2016-03-20 383 383yNMmMIRGDZG

9 red 3 1508 GB GBR United Kingdom * ["latitude": 53.5, "longitude™: -2.19} 2016-03-20 3, 3910n3ILA
vellow & 191 KR KOR Republic of Korea * {"latitude": 37,29, "longitude™: 2016-03-20 455 AS5L4JOFUG

127.01}
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CONCLUSION

At the end of the day, data issues are inevitable. However, the key is to limit data pollution as much as possible and have methods to detect discrepancies, changes

and history via schema management. Databricks Auto Loader provides many solutions for schema management, as illustrated by the examples in this chapter. Having a
solidified data governance and landing zone strategy will make ingestion and streaming easier and more efficient for loading data into the lakehouse. Whether it is simply
converting raw JSON data incrementally to the Bronze layer as Delta Lake format, or having a repository to store schema metadata, AL makes your job easier. It acts as an

anchor to building a resilient lakehouse architecture that provides reusable, consistent, reliable and performant data throughout the data and Al lifecycle.

HTML notebooks (Spark Scala and Spark Python) with code and both sample datasets can be found at the GitHub repo here.

< databricks


https://github.com/thePurplePython/blogs/tree/master/databricks/1
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From Idea to Code: Building With the
Databricks SDK for Python

by Kimberly Mahoney

The focus of this chapter is to demystify the Databricks SDK for Python — the
authentication process and the components of the SDK — by walking through the
start-to-end development process. I'll also be showing how to utilize IntelliSense
and the debugger for real-time suggestions in order to reduce the amount of

context-switching from the IDE to documentation and code examples.
What is the Databricks SDK for Python... and why you should use it

The Databricks Python SDK lets you interact with the Databricks Platform
programmatically using Python. It covers the entire Databricks API surface and
Databricks REST operations. While you can interact directly with the API via curl

or a library like 'requests’ there are benefits to utilizing the SDKs such as:
= Secure and simplified authentication via Databricks client-unified
authentication
= Built-in debug logging with sensitive information automatically redacted

= Support to wait for long-running operations to finish (kicking off a job,

starting a cluster)

= Standard iterators for paginated APIs (we have multiple pagination types in
our APIs!)

= Retrying on transient errors
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There are numerous practical applications, such as building multi-tenant web
applications that interact with your ML models or a robust UC migration toolkit
like Databricks Labs project UCX. Don't forget the silent workhorses — those
simple utility scripts that are more limited in scope but automate an annoying
task such as bulk updating cluster policies, dynamically adding users to groups
or simply writing data files to UC Volumes. Implementing these types of scripts is

a great way to familiarize yourself with the Python SDK and Databricks APIs.

SCENARIO

Imagine my business is establishing best practices for development and CI/CD
on Databricks. We're adopting DABs to help us define and deploy workflows in
our development and production workspaces, but in the meantime, we need

to audit and clean up our current environments. We have a lot of jobs people
created in our dev workspace via the Ul. One of the platform admins observed
many of these jobs are inadvertently configured to run on a recurring schedule,
racking up unintended costs. As part of the cleanup process, we want to identify
any scheduled jobs in our development workspace with an option to pause them.

We'll need to figure out:
= How to install the SDK
= How to connect to the Databricks workspace

= How to list all the jobs and examine their attributes

= How to log the problematic jobs — or a step further, how to call the API to

pause their schedule


https://docs.databricks.com/en/dev-tools/sdk-python.html
https://docs.databricks.com/en/dev-tools/auth/index.html#databricks-client-unified-authentication
https://docs.databricks.com/en/dev-tools/auth/index.html#databricks-client-unified-authentication
https://github.com/databrickslabs/ucx
https://docs.databricks.com/en/dev-tools/bundles/index.html
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DEVELOPMENT ENVIRONMENT

Before diving into the code, you need to set up your development environment.
I highly recommend using an IDE that has a comprehensive code completion
feature as well as a debugger. Code completion features, such as IntelliSense
in VS Code, are really helpful when learning new libraries or APls — they provide
useful contextual information, autocompletion, and aid in code navigation.

For this chapter, I'll be using Visual Studio Code so | can also make use of

the Databricks Extension as well as Pylance. You'll also need to install the
databricks-sdk (docs). In this chapter, I'm using Poetry + Pyenv. The setup is
similar for other tools — just ‘poetry add databricks-sdk' or alternatively 'pip

install databricks-sdk’ in your environment.

AUTHENTICATION

The next step is to authorize access to Databricks so we can work with our
workspace. There are several ways to do this, but because I'm using the VS Code
Extension, I'll take advantage of its authentication integration. It's one of the tools
that uses unified client authentication — that just means all these development
tools follow the same process and standards for authentication and if you set

up auth for one, you can reuse it among the other tools. | set up both the CLI

and VS Code Extension previously, but here is a primer on setting up the CLI

and installing the extension. Once you've connected successfully, you'll see

a notification banner in the lower right-hand corner and see two hidden files
generated in the .databricks folder — project.json and databricks.env (don't worry,

the extension also handles adding these to .gitignore).
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For this example, while we're interactively developing in our IDE, we'll be using
what'’s called U2M (user-to-machine) OAuth. We won't get into the technical
details, but OAuth is a secure protocol that handles authorization to resources
without passing sensitive user credentials such as PAT or username/password

that persist much longer than the one-hour short-lived OAuth token.

w = WorkspaceClient()
v B Cluster - "None atta...
~ 3 Syne Destination
[J Name
State
Path

TERMINAL

~ TERMINAL

kimberly.mahoney/Documents/demos/dev-job-monitoring/job-monitoring/.venv/bin/activat )

e /Users/kimberly.mahoney/Documents/demos/

dev-job-mon _
(job-monitoring-py3.11) ki ly. 6 ~job-monitoring % ||

0]

3¢ Databricks Connect disabled @0 A0 o Ln3,Col 22 Spaces:4 UTF-8 LF {} Python 3.11.5 (‘venv': Poetry) [}

OAuth flow for the Databricks Python SDK


https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
https://docs.databricks.com/en/dev-tools/sdk-python.html#get-started-with-the-databricks-sdk-for-python&language-Poetry
https://docs.databricks.com/en/dev-tools/auth/index.html#databricks-client-unified-authentication
https://docs.databricks.com/en/dev-tools/cli/install.html
https://docs.databricks.com/en/dev-tools/vscode-ext/install.html
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WORKSPACECLIENT VS. ACCOUNTCLIENT

The Databricks APl is split into two primary categories — account and workspace.
They let you manage different parts of Databricks, like user access at the
account level or cluster policies in a workspace. The SDK reflects this with two
clients that act as our entry points to the SDK — the WorkspaceClient and
AccountClient. For our example we'll be working at the workspace level, so I'll be
initializing the WorkspaceClient. If you're unsure which client to use, check out the

SDK documentation.

Tip: Because we ran the previous steps to authorize access via unified client auth,
the SDK will automatically use the necessary Databricks environment variables,
so there's no need for extra configurations when setting up your client. All we

need are these two lines of code:

= |nitializing our WorkspaceClient

from databricks.sdk import WorkspaceClient

w = WorkspaceClient()
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MAKING API CALLS AND INTERACTING WITH DATA

The WorkspaceClient we instantiated will allow us to interact with different

APIs across the Databricks workspace services. A service is a smaller component
of the Databricks Platform — e.g., Jobs, Compute, Model Registry.

In our example, we'll need to call the Jobs APl in order to retrieve a list of all the

jobs in the workspace.

A2 git_credentials
/2 global_init_scripts
J2 grants

22 groups

Z2 instance_pools

22 instance_profiles
S ip_access_lists
22 jobs

2 libraries

22 metastores

22 model_registry

/2% model_versions

Services accessible via the Python SDK


https://databricks-sdk-py.readthedocs.io/en/latest/clients.html
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This is where IntelliSense really comes in handy. Instead of context switching
between the IDE and the Documentation page, | can use autocomplete to provide
a list of methods as well as examine the method description, the parameters and
return types from within the IDE. | know the first step is getting a list of all the jobs
in the workspace:
m databricks.sdk t WorkspaceClient

w = WorkspaceClient()

job_list = w.jobs.list{()|

(method) def list(

*,

expand_tasks: bool | Non
limit: int | Non |
name: str | None =
offset: int | None
page_token: str | Non

) => Iterator[BaseJob]

List jobs.
Retrieves a list of jobs.

:param expand_tasks: bool (optional)
Whether to include task and cluster details in the response.

As you can see, it returns an iterator over an object called BaseJob. Before

we talk about what a BaseJob actually is, it'll be helpful to understand how data
is used in the SDK. To interact with data you are sending to and receiving from
the API, the Python SDK takes advantage of Python data classes and enums.
The main advantage of this approach over passing around dictionaries is
improved readability while also minimizing errors through enforced type checks

and validations.

< databricks

100

You can construct objects with data classes and interact with enums.

For example:

= Creating an Employee via Employee DataClass and company departments,

using enums for possible department values

from dataclasses import dataclass

from enum import Enum
from typing import Optional

class CompanyDepartment(Enum):
MARKETING = 'MARKETING'
SALES = 'SALES'
ENGINEERING = 'ENGINEERING'

@dataclass
class Employee:
name: str
email: str
department: Optional[CompanyDepartment] = None

emp = Employee('Bob', 'bob@company.com', CompanyDepartment.ENGINEERING)

In the Python SDK all of the data classes, enums and APIs belong to the same
module for a service located under databricks.sdk.service — e.g.,, databricks.

sdk.service.jobs, databricks.sdk.service.billing, databricks.sdk.service.sql.


https://docs.python.org/3/library/dataclasses.html
https://docs.python.org/3/library/enum.html
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For our example, we'll need to loop through all of the jobs and make a decision
on whether or not they should be paused. I'll be using a debugger in order to
look at a few example jobs and get a better understanding of what a ‘BaseJob’
looks like. The Databricks VS Code extension comes with a debugger that can
be used to troubleshoot code issues interactively on Databricks via Databricks
Connect. But, because | do not need to run my code on a cluster, I'll just be using
the standard Python debugger. I'll set a breakpoint inside for my loop and use
the VS Code Debugger to examine a few examples. A breakpoint allows us to
stop code execution and interact with variables during our debugging session.
This is preferable over print statements, as you can use the debugging console
to interact with the data as well as progress the loop. In this example I'm looking
at the settings field and drilling down further in the debugging console to take a

look at what an example job schedule looks like:

RUNA.. [> PythonDeb™~ <

~ VARIABLES

~ Locals

job all_jobs:
job_id = job.job_id

TERMINAL
> Globals
» ~ DEBUG CONSOLE

[ job.settings.schedule

> WATCH
> CALL STACK

2 BREAKPOINTS

Inspecting BaseJob in the VS Code debugger
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We can see a BaseJob has a few top-level attributes and has a more complex
Settings type that contains most of the information we care about. At this
point, we have our WorkspaceClient and are iterating over the jobs in our
workspace. To flag problematic jobs and potentially take some action, we'll need
to better understand job.settings.schedule. We need to figure out how to
programmatically identify if a job has a schedule and flag if it's not paused. For
this we'll be using another handy utility for code navigation — Go to Definition.
I've opted to Open Definition to the Side (8K F12) in order to reduce switching
to a new window. This will allow us to quickly navigate through the data class

definitions without having to switch to a new window or exit our IDE:

As we can see, a BaseJob contains some top-level fields that are common
among jobs such as 'job_id' or ‘created_time'. A job can also have various settings
(JobSettings). These configurations often differ between jobs and encompass
aspects like notification settings, tasks, tags and the schedule. We'll be focusing
on the schedule field, which is represented by the CronSchedule data class.
CronSchedule contains information about the pause status (PauseStatus) of a
job. PauseStatus in the SDK is represented as an enum with two possible values
— PAUSED and UNPAUSED.


https://code.visualstudio.com/docs/editor/debugging
https://docs.databricks.com/en/dev-tools/vscode-ext/dev-tasks/databricks-connect.html
https://docs.databricks.com/en/dev-tools/vscode-ext/dev-tasks/databricks-connect.html
https://code.visualstudio.com/docs/python/debugging
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-definition
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Tip: VSCode + Pylance provides code suggestions, and you can enable auto
imports in your User Settings or on a per-project basis in Workspace Settings.
By default, only top-level symbols are suggested for auto import and suggested
code (see original GitHub issue). However, the SDK has nested elements we want
to generate suggestions for. We actually need to go down 5 levels — databricks.
sdk.service.jobs.<Enum|Dataclass>. In order to take full advantage of these

features for the SDK, | added a couple of workspace settings:

= Selection of theVSCode Workspace settings.json

"python.analysis.autoImportCompletions": true,
"python.analysis.indexing": true,
"python.analysis.packageIndexDepths": [

{

"name": "databricks",
"depth": 5,
"includeAllSymbols": true

Putting it all together:
| broke out the policy logic into its own function for unit testing, added some
logging and expanded the example to check for any jobs tagged as an exception

to our policy. Now we have:

= Logging out of policy jobs
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import logging

from databricks.sdk import WorkspaceClient
from databricks.sdk.service.jobs import CronSchedule, JobSettings, PauseStatus

# Initialize WorkspaceClient
w = WorkspaceClient()

def update_new_settings(job_id, quarts_cron_expression, timezone_id):
"""Update out of policy job schedules to be paused"""
new_schedule = CronSchedule(
quartz_cron_expression=quarts_cron_expression,
timezone_id=timezone_id,
pause_status=PauseStatus.PAUSED,

)

new_settings = JobSettings(schedule=new_schedule)

logging.info(f"Job id: {job_id}, new_settings: {new_settings}")
w.jobs.update(job_id, new_settings=new_settings)

def out_of_policy(job_settings: JobSettings):
"""Check if a job is out of policy.
If it unpaused and has a schedule and is not tagged as keep_alive
Return true if out of policy, false if in policy

tagged = bool(job_settings.tags)
proper_tags = tagged and '"keep_alive" in job_settings.tags
paused = job_settings.schedule.pause_status is PauseStatus.PAUSED

return not paused and not proper_tags

all_jobs = w.jobs.list()
for job in all_jobs:
job_id = job.job_id
if job.settings.schedule and out_of_policy(job.settings):
schedule = job.settings.schedule

logging.info(
f"Job name: {job.settings.name}, Job id: {job_id}, creator: {job.creator_
user_name}, schedule: {schedule}"

)


https://code.visualstudio.com/docs/getstarted/settings
https://github.com/microsoft/pylance-release/issues/2533#issuecomment-1089268739
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Now we have not only a working example but also a great foundation for building
out a generalized job monitoring tool. We're successfully connecting to our
workspace, listing all the jobs and analyzing their settings, and, when we're ready,
we can simply call our ‘'update_new_settings function to apply the new paused
schedule. It's fairly straightforward to expand this to meet other requirements
you may want to set for a workspace — for example, swap job owners to service
principles, add tags, edit notifications or audit job permissions. See the example

in the GitHub repository.

SCHEDULING A JOB ON DATABRICKS

You can run your script anywhere, but you may want to schedule scripts that use
the SDK to run as a Databricks Workflow or job on a small single-node cluster.
When running a Python notebook interactively or via automated workflow, you
can take advantage of default Databricks Notebook authentication. If you're
working with the Databricks WorkspaceClient and your cluster meets the
requirements listed in the docs, you can initialize your WorkspaceClient without
needing to specify any other configuration options or environment variables — it

works automatically out of the box.
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b J-example > Run 39964512

job-monitoring run  osiginal (latest) - @ Suecoeded

Output

3

PrOPEr_tags = Logged ang REEp_gLIvE 1N JOD_SETTINgGS.tegs
paused = job_settings.schedule.pause_status is PauseStatus.PAUSED

return not paused and not proper_tags

all_jobs = w. jobs, List{)
for job in all_jobs:
job_id = job.job_id
if jgm.settings.schedule and out_of_policyljob.settings):
schedule = job.settings.schedule

print(f"Job name: {job.settings.name}, Job id: {job_id}, schedule: {schedule.quartz_cron_expression}”)

Job name: test-mlops-project-natyra-model-training-job, Job id: 5126547
Job name: test-mlops-project-natyra-write-feature-table-job, Job id: 58
Job name: test-mlops-project-natyra-batch-inference-job, Job id: 661538
Job name: staging-mlops-project-natyra-write-feature-table-job, Job id:
Job name: staging-mlops-project-natyra-medel-training-job, Job id: 5747
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£t task OF

Task run details

Job 1D 640112777346392 @

Jab run 1D 3996412437641 [

Task run ID #77618783773277 [

Run as (] kmahaney-sek

Launched Manually
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Lineage () nloimation fof this job.

Notebook
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Compute
@ Job_cluster

Driver: i3.xiarga - Workers: 13.xkarge - 1 worker - On-demand and Spot - fall
back to On-demand - 13.3 LTS Photon (includes Apache Spark 3.4.1, Scala
2.12) - us-east-1b

View details Spark Ul Logs Metrics

Dependent libraries

databricks-sdk==0.17.0 (PyPi)



https://github.com/kimberlyma/dev-job-monitoring
https://docs.databricks.com/en/dev-tools/sdk-python.html#use-the-databricks-sdk-for-python-from-a-databricks-notebook
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CONCLUSION

In conclusion, the Databricks SDKs offer limitless potential for a variety of
applications. We saw how the Databricks SDK for Python can be used to
automate a simple yet crucial maintenance task and also saw an example

of an OSS project that uses the Python SDK to integrate with the Databricks
Platform. Regardless of the application you want to build, the SDKs streamline
development for the Databricks Platform and allow you to focus on your
particular use case. The key to quickly mastering a new SDK such as the
Databricks Python SDK is setting up a proper development environment.
Developing in an IDE allows you to take advantage of features such as a debugger,
parameter info and code completion, so you can quickly navigate and familiarize
yourself with the codebase. Visual Studio Code is a great choice for this as it
provides the above capabilities and you can utilize the VSCode extension for

Databricks to benefit from unified authentication.

Any feedback is greatly appreciated and welcome. Please raise any issues in the

Python SDK GitHub repository. Happy developing!
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ADDITIONAL RESOURCES

= Databricks SDK for Python Documentation
= DAIS Presentation: Unlocking the Power of Databricks SDKs

= How to install Python libraries in your local development environment:

How to Create and Use Virtual Environments in Python With Poetry

= |nstalling the Databricks Extension for Visual Studio Code



https://github.com/databricks/databricks-sdk-py
https://databricks-sdk-py.readthedocs.io/en/latest/
https://www.youtube.com/watch?v=HWKJV_cRT9M
https://www.youtube.com/watch?v=0f3moPe_bhk
https://docs.databricks.com/en/dev-tools/vscode-ext/install.html
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Ready-to-Use Notebooks
and Datasets
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This section includes several Solution Accelerators — free, ready-to-use
examples of data solutions from different industries ranging from retail to
manufacturing and healthcare. Each of the following scenarios includes
notebooks with code and step-by-step instructions to help you get started.
Get hands-on experience with the Databricks Data Intelligence Platform by
trying the following for yourself:

Overall Equipment
Effectiveness
Ingest equipment sensor data for

metric generation and data-driven
decision-making

. Explore the Solution @

Real-Time Point-of-Sale
Analytics

Calculate current inventories for
various products across multiple store
locations with Delta Live Tables

. Explore the Solution ©

-

4

oYty
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Digital Twins

Leverage digital twins — virtual
representations of devices and
objects — to optimize operations
and gain insights

. Explore the Solution ©

Recommendation Engines
for Personalization

Improve customers’ user experience
and conversion with personalized
recommendations

. Explore the Solution @

Understanding Price
Transparency Data
Efficiently ingest large healthcare

datasets to create price transparency for
better understanding of healthcare costs

. Explore the Solution ©

Additional Solution Accelerators with ready-to-use notebooks can be found here:

Databricks Solution Accelerators @

< databricks


https://www.databricks.com/solutions/accelerators
https://www.databricks.com/solutions/accelerators
https://www.databricks.com/solutions/accelerators/overall-equipment-effectiveness
https://www.databricks.com/solutions/accelerators/overall-equipment-effectiveness
https://www.databricks.com/solutions/accelerators/real-time-point-of-sale-analytics
https://www.databricks.com/solutions/accelerators/overall-equipment-effectiveness
https://databricks.com/solutions/accelerators/digital-twins
https://www.databricks.com/solutions/accelerators/overall-equipment-effectiveness
https://www.databricks.com/solutions/accelerators/recommendation-engines
https://www.databricks.com/solutions/accelerators/overall-equipment-effectiveness
https://www.databricks.com/solutions/accelerators/price-transparency-data
https://www.databricks.com/solutions/accelerators/overall-equipment-effectiveness
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Case Studies
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Cox AUTOMOTIVE

INDUSTRY
Automotive

SOLUTION

Data-Driven ESG, Customer Entity
Resolution, Demand Forecasting,
Product Matching

PLATFORM
Workflows, Unity Catalog, Delta
Sharing, ETL

CLOUD
Azure
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Cox Automotive — changing the way the world buys, sells and
uses vehicles

“We use Databricks Workflows as our default orchestration tool to perform ETL and enable
automation for about 300 jobs, of which approximately 120 are scheduled to run regularly.”

— Robert Hamlet, Lead Data Engineer, Enterprise Data Services, Cox Automotive

Cox Automotive Europe is part of Cox Automotive, the world’s largest automotive service organization, and is on a mission to
transform the way the world buys, sells, owns and uses vehicles. They work in partnership with automotive manufacturers,

fleets and retailers to improve performance and profitability throughout the vehicle lifecycle. Their businesses are organized
around their customers’ core needs across vehicle solutions, remarketing, funding, retail and mobility. Their brands in Europe

include Manheim, Dealer Auction, NextGear Capital, Modix and Codeweavers.

Cox's enterprise data services team recently built a platform to consolidate the company’s data and enable their data
scientists to create new data-driven products and services more quickly and easily. To enable their small engineering team
to unify data and analytics on one platform while enabling orchestration and governance, the enterprise data services team

turned to the Databricks Data Intelligence Platform, Workflows, Unity Catalog and Delta Sharing.


https://www.databricks.com/solutions/industries/manufacturing-industry-solutions
https://www.databricks.com/solutions/industries/telco-industry-solutions
https://www.databricks.com/solutions/accelerators/esg
https://www.databricks.com/solutions/accelerators/customer-entity-resolution
https://www.databricks.com/solutions/accelerators/customer-entity-resolution
https://www.databricks.com/solutions/accelerators/demand-forecasting
https://www.databricks.com/solutions/accelerators/product-matching-with-ml
https://www.databricks.com/product/workflows
https://www.databricks.com/product/unity-catalog
https://www.databricks.com/product/delta-sharing
https://www.databricks.com/product/delta-sharing
https://www.databricks.com/solutions/data-engineering
https://www.databricks.com/product/azure
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EASY ORCHESTRATION AND OBSERVABILITY IMPROVE
ABILITY TO DELIVER VALUE

Cox Automotive's enterprise data services team maintains a data platform that
primarily serves internal customers spanning across business units, though they
also maintain a few data feeds to third parties. The enterprise data services

team collects data from multiple internal sources and business units. “We use
Databricks Workflows as our default orchestration tool to perform ETL and enable
automation for about 300 jobs, of which approximately 120 are scheduled to run
regularly,” says Robert Hamlet, Lead Data Engineer, Enterprise Data Services,

at Cox Automotive.

Jobs may be conducted weekly, daily or hourly. The amount of data processed
in production pipelines today is approximately 720GB per day. Scheduled jobs
pull from different areas both within and outside of the company. Hamlet uses
Databricks Workflows to deliver data to the data science team, to the in-house
data reporting team through Tableau, or directly into Power Bl. “Databricks
Workflows has a great user interface that allows you to quickly schedule any
type of workflow, be it a notebook or JAR,” says Hamlet. “Parametrization

has been especially useful. It gives us clues as to how we can move jobs
across environments. Workflows has all the features you would want from an

orchestrator.”
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Hamlet also likes that Workflows provides observability into every workflow run
and failure notifications so they can get ahead of issues quickly and troubleshoot
before the data science team is impacted. “We use the job notifications feature
to send failure notifications to a webhook, which is linked to our Microsoft Teams
account,” he says. “If we receive an alert, we go into Databricks to see what's
going on. It's very useful to be able to peel into the run logs and see what errors
occurred. And the Repair Run feature is nice to remove blemishes from your

perfect history.”

UNITY CATALOG AND DELTA SHARING IMPROVE DATA
ACCESS ACROSS TEAMS

Hamlet’'s team recently began using Unity Catalog to manage data access,
improving their existing method, which lacked granularity and was difficult to
manage. “With our new workspace, we're trying to use more DevOps principles,
infrastructure-as-code and groups wherever possible,” he says. “l want to easily
manage access to a wide range of data to multiple different groups and entities,
and | want it to be as simple as possible for my team to do so. Unity Catalog is

the answer to that.”

The enterprise data services team also uses Delta Sharing, which natively
integrates with Unity Catalog and allows Cox to centrally manage and audit
shared data outside the enterprise data services team while ensuring robust
security and governance. “Delta Sharing makes it easy to securely share data
with business units and subsidiaries without copying or replicating it,” says
Hamlet. “It enables us to share data without the recipient having an identity in our

workspace.”
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LOOKING AHEAD: INCORPORATING ADDITIONAL DATA
INTELLIGENCE PLATFORM CAPABILITIES

Going forward, Hamlet plans to use Delta Live Tables (DLT) to make it easy to
build and manage batch and streaming data pipelines that deliver data on the
Databricks Data Intelligence Platform. DLT will help data engineering teams
simplify ETL development and management. Eventually, Hamlet may also use
Delta Sharing to easily share data securely with external suppliers and partners
while meeting security and compliance needs. “DLT provides us an opportunity
to make it simpler for our team. Scheduling Delta Live Tables will be another

place we'll use Workflows,” he says.

Hamlet is also looking forward to using the data lineage capabilities within

Unity Catalog to provide his team with an end-to-end view of how data flows

in the lakehouse for data compliance requirements and impact analysis of data
changes. “That’s a feature I'm excited about,” Hamlet says. “Eventually, | hope we
get to a point where we have all our data in the lakehouse, and we get to make
better use of the tight integrations with things like data lineage and advanced

permissions management.”

< databricks
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INDUSTRY
Financial Services

PLATFORM
Delta Live Tables, Data Streaming,
Machine Learning, ETL

cLOUD
AWS

< databricks

Block — building a world-class data platform

Block standardizes on Delta Live Tables to expand
secure economic access for millions

90% 150

Improvement in Pipelines being onboarded in
development velocity addition to the 10 running daily

Block is a global technology company that champions accessible financial services and prioritizes economic empowerment.
Its subsidiaries, including Square, Cash App and TIDAL, are committed to expanding economic access. By utilizing artificial
intelligence (Al) and machine learning (ML), Block proactively identifies and prevents fraud, ensuring secure customer
transactions in real time. In addition, Block enhances user experiences by delivering personalized recommendations and using
identity resolution to gain a comprehensive understanding of customer activities across its diverse services. Internally, Block
optimizes operations through automation and predictive analytics, driving efficiency in financial service delivery. Block uses
the Data Intelligence Platform to bolster its capabilities, consolidating and streamlining its data, Al and analytics workloads.
This strategic move positions Block for the forthcoming automation-driven innovation shift and solidifies its position as a

pioneer in Al-driven financial services.


https://www.databricks.com/solutions/industries/financial-services
https://www.databricks.com/solutions/industries/telco-industry-solutions
https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/data-streaming
https://www.databricks.com/product/machine-learning
https://www.databricks.com/product/aws
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ENABLING CHANGE DATA CAPTURE FOR STREAMING
DATA EVENTS ON DELTA LAKE

Block’s Data Foundations team is dedicated to helping its internal customers
aggregate, orchestrate and publish data at scale across the company’s
distributed system to support business use cases such as fraud detection,
payment risk evaluation and real-time loan decisions. The team needs access
to high-quality, low-latency data to enable fast, data-driven decisions and

reactions.

Block had been consolidating on Kafka for data ingestion and Delta Lake for data
storage. More recently, the company sought to make real-time streaming data
available in Delta Lake as Silver (cleansed and conformed) data for analytics

and machine learning. It also wanted to support event updates and simple data
transformations and enable data quality checks to ensure higher-quality data.
To accomplish this, Block considered a few alternatives, including the Confluent-
managed Databricks Delta Lake Sink connector, a fully managed solution with
low latency. However, that solution did not offer change data capture support
and had limited transformation and data quality check support. The team also
considered building their own solution with Spark Structured Streaming, which
also provided low latency and strong data transformation capabilities. But that
solution required the team to maintain significant code to define task workflows,
change data and capture logic. They'd also have to implement their own data

quality checks and maintenance jobs.
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LEVERAGING THE LAKEHOUSE TO SYNC KAFKA STREAMS
TO DELTA TABLES IN REAL TIME

Rather than redeveloping its data pipelines and applications on new, complex,
proprietary and disjointed technology stacks, Block turned to the Data
Intelligence Platform and Delta Live Tables (DLT) for change data capture and

to enable the development of end-to-end, scalable streaming pipelines and
applications. DLT pipelines simply orchestrate the way data flows between Delta
tables for ETL jobs, requiring only a few lines of declarative code. It automates
much of the operational complexity associated with running ETL pipelines and,
as such, comes with preselected smart defaults yet is also tunable, enabling
the team to optimize and debug easily. “DLT offers declarative syntax to define
a pipeline, and we believed it could greatly improve our development velocity,”
says Yue Zhang, Staff Software Engineer for the Data Foundations team at Block.
“It's also a managed solution, so it manages the maintenance tasks for us, it

has data quality support, and it has advanced, efficient autoscaling and Unity

Catalog integration.”

Today, Block’s Data Foundations team ingests events from internal services in
Kafka topics. A DLT pipeline consumes those events into a Bronze (raw data)
table in real time, and they use the DLT API to apply changes and merge data
into a higher-quality Silver table. The Silver table can then be used by other
DLT pipelines for model training, to schedule model orchestration, or to define
features for a features store. “It's very straightforward to implement and build

DLT pipelines,” says Zhang.


https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/blog/2022/12/08/build-reliable-and-cost-effective-streaming-data-pipelines.html
https://www.databricks.com/blog/build-governed-pipelines-delta-live-tables-and-unity-catalog
https://www.databricks.com/blog/build-governed-pipelines-delta-live-tables-and-unity-catalog
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The Block Data Foundations team’s streaming data architecture with Delta Live

Tables pipelines

Using the Python API to define a pipeline requires three steps: a row table, a
Silver table and a merge process. The first step is to define the row table. Block
consumes events from Kafka, performs some simple transformations, and
establishes the data quality check and its rule. The goal is to ensure all events

have a valid event ID.

The next step is to define the Silver table or target table, its storage location

and how it is partitioned. With those tables defined, the team then determines
the merge logic. Using the DLT API, they simply select APPLY CHANGES INTO. If
two units have the same event ID, DLT will choose the one with the latest ingest

timestamp. “That’s all the code you need to write,” says Zhang.

Finally, the team defines basic configuration settings from the DLT Ul, such
as characterizing clusters and whether the pipeline will run in continuous or

triggered modes.

< databricks
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Following their initial DLT proof of concept, Zhang and his team implemented
CI/CD to make DLT pipelines more accessible to internal Block teams. Different
teams can now manage pipeline implementations and settings in their own repos,
and, once they merge, simply use the Databricks pipelines API to create, update

and delete those pipelines in the CI/CD process.

BOOSTING DEVELOPMENT VELOCITY WITH DLT

Implementing DLT has been a game-changer for Block, enabling it to boost
development velocity. “With the adoption of Delta Live Tables, the time
required to define and develop a streaming pipeline has gone from days

to hours,” says Zhang.

Meanwhile, managed maintenance tasks have resulted in better query
performance, improved data quality has boosted customer trust, and more
efficient autoscaling has improved cost efficiency. Access to fresh data means
Block data analysts get more timely signals for analytics and decision-making,
while Unity Catalog integration means they can better streamline and automate
data governance processes. “Before we had support for Unity Catalog, we had
to use a separate process and pipeline to stream data into S3 storage and

a different process to create a data table out of it,” says Zhang. “With Unity
Catalog integration, we can streamline, create and manage tables from the DLT

pipeline directly.”

Block is currently running approximately 10 DLT pipelines daily, with about
two terabytes of data flowing through them, and has another 150 pipelines to
onboard. “Going forward, we're excited to see the bigger impacts DLT can offer

us,” adds Zhang.


https://www.databricks.com/blog/2022/04/25/simplifying-change-data-capture-with-databricks-delta-live-tables.html
https://www.databricks.com/blog/applying-software-development-devops-best-practices-delta-live-table-pipelines
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INDUSTRY
Retail and Consumer Goods

SOLUTION
Real-Time Point-of-Sale Analytics

PLATFORM
Delta Lake, Databricks SQL, Delta
Live Tables, Data Streaming

PARTNER
Qlik

cCLOUD
Azure
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Trek — global bicycle leader accelerates retail analytics

80%-90% 3X

Increase in daily data
refreshes on Databricks

1 Week

Reduction in ERP data replication,
which now happens in near real time

Acceleration in runtime of retail
analytics solution globally

“How do you scale up analytics without blowing a hole in your technology budget? For us,
the clear answer was to run all our workloads on Databricks Data Intelligence Platform and
replicate our data in near real-time with Qlik.”

— Garrett Baltzer, Software Architect, Data Engineering, Trek Bicycle

Trek Bicycle started in a small Wisconsin barn in 1976, but their founders always saw something bigger. Decades later, the
company is on a mission to make the world a better place to live and ride. Trek only builds products they love and provides
incredible hospitality to customers as they aim to change the world for the better by getting more people on bikes. Frustrated
by the rising costs and slow performance of their data warehouse, Trek migrated to Databricks Data Intelligence Platform. The
company now uses Qlik to replicate their ERP data to Databricks in near real-time and stores data in Delta Lake tables. With
Databricks and Qlik, Trek has dramatically accelerated their retail analytics to provide a better experience for their customers

with a unified view of the global business to their data consumers, including business and IT users.


https://www.databricks.com/solutions/industries/retail-industry-solutions
https://www.databricks.com/solutions/accelerators/real-time-point-of-sale-analytics
https://www.databricks.com/solutions/industries/telco-industry-solutions
https://www.databricks.com/product/delta-lake-on-databricks
https://www.databricks.com/product/databricks-sql
https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/delta-live-tables
https://www.databricks.com/product/data-streaming
https://www.qlik.com/us/products/technology/databricks
https://www.databricks.com/product/azure
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SLOW DATA PROCESSING HINDERS RETAIL ANALYTICS

As Trek Bicycle works to make the world better by encouraging more people to
ride bikes, the company keeps a close eye on what's happening in their hundreds
of retail stores. But until recently, running analytics on their retail data proved
challenging because Trek relied on a data warehouse that couldn’t scale cost-

effectively.

“The more stores we added, the more information we added to our processes
and solutions,” explained Garrett Baltzer, Software Architect, Data Engineering,
at Trek Bicycle. “Although our data warehouse did scale to support greater data
volumes, our processing costs were skyrocketing, and processes were taking far
too long. Some of our solutions were taking over 30 hours to produce analytics,

which is unacceptable from a business perspective.”

Adding to the challenge, Trek’s data infrastructure hindered the company'’s
efforts to achieve a global view of their business performance. Slow processing
speeds meant Trek could only process data once per day for one region at a

time.

“We were processing retail data separately for our North American, European
and Asia-Pacific stores, which meant everyone downstream had to wait for
actionable insights for different use cases,” recalled Advait Raje, Team Lead, Data
Engineering, at Trek Bicycle. “We soon made it a priority to migrate to a unified

data platform that would produce analytics more quickly and at a lower cost.”

< databricks
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DELTA LAKE UNIFIES RETAIL DATA FROM AROUND
THE GLOBE

Seeking to modernize their data infrastructure to speed up data processing

and unify all their data from global sources, Trek started migrating to the
Databricks Data Intelligence Platform in 2019. The company'’s processing speeds
immediately increased. Qlik’s integration with the Databricks Data Intelligence
Platform helps feed Trek's lakehouse. This replication allows Trek to build a wide
range of valuable data products for their sales and customer service teams.

“Qlik enabled us to move relevant ERP data into Databricks where we don’t have
to worry about scaling vertically because it automatically scales parallel. Since
70 to 80% of our operational data comes from our ERP system, Qlik has made it
possible to get far more out of our ERP data without increasing our costs,” Baltzer

explained.

Trek is now running all their retail analytics workloads in the Databricks Data
Intelligence Platform. Today, Trek uses the Databricks Data Intelligence Platform
to collect point-of-sale data from nearly 450 stores around the globe. All
computation happens on top of Trek’s lakehouse. The company runs a semantic
layer on top of this lakehouse to power everything from strategic high-level
reporting for C-level executives to daily sales and operations reports for

individual store employees.

“Databricks Data Intelligence Platform has been a game-changer for Trek,” said
Raje. “With Qlik Cloud Data Integration on Databricks, it became possible to
replicate relevant ERP data to our Databricks in real time, which made it far more
accessible for downstream retail analytics. Suddenly, all our data from multiple
repositories was available in one place, enabling us to reduce costs and deliver

on business needs much more quickly.”
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Trek’s Bl and data analysts leverage Databricks SQL, their serverless data
warehouse, for ad hoc analysis to answer business questions much more quickly.
Internal customers can leverage Power Bl connecting directly to Databricks to
consume retail analytics data from Gold tables. This ease of analysis helps the
company monitor and enhance their Net Promoter Scores. Trek uses Structured
Streaming and Auto Loader functionality within Delta Live Tables to transform the

data from Bronze to Silver or Gold, according to the medallion architecture.

“Delta Live Tables have greatly accelerated our development velocity,” Raje
reported. “In the past, we had to use complicated ETL processes to take data
from raw to parsed. Today, we just have one simple notebook that does it, and

then we use Delta Live Tables to transform the data to Silver or Gold as needed.”

DATA INTELLIGENCE PLATFORM ACCELERATES
ANALYTICS BY 80% TO 90%

By moving their data processing to the Databricks Data Intelligence Platform
and integrating data with Qlik, Trek has dramatically increased the speed of their
processing and overall availability of data. Prior to implementing Qlik, they had

a custom program that, once a week, on a Sunday, replicated Trek’s ERP data
from on-premises servers to a data lake using bulk copies. Using Qlik, Trek now
replicates relevant data from their ERP system as Delta tables directly in their

lakehouse.

“We used to work with stale ERP data all week because replication only happened
on Sundays,” Raje remarked. “Now we have a nearly up-to-the-minute view of
what’s going on in our business. That's because Qlik lets us keep replicating

through the day, streaming data from ERP into our lakehouse.”

< databricks
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Trek’s retail analytics solution used to take 48+ hours to produce meaningful
results. Today, Trek runs the solution on the Databricks Data Intelligence Platform
to get results in six to eight hours — an 80 to 90% improvement, thus allowing
daily runs. A complementary retail analytics solution went from 12-14 hours down
to under 4-5 hours, thereby enabling the lakehouse to refresh three times per

day, compared to only once a day previously.

“Before Databricks, we had to run our retail analytics once a day on North
American time, which meant our other regions got their data late,” said Raje.
“Now, we refresh the lakehouse three times per day, one for each region, and
stakeholders receive fresh data in time to drive their decisions. Based on the
results we've achieved in the lakehouse, we're taking a Databricks-first approach
to all our new projects. We're even migrating many of our on-premises BI

solutions to Databricks because we're all-in on the lakehouse.”

“Databricks Data Intelligence Platform, along with data replication to Databricks
using Qlik, aligns perfectly with our broader cloud-first strategy,” said Steve
Novoselac, Vice President, IT and Digital, at Trek Bicycle. “This demonstrates

confidence in the adoption of this platform at Trek.”


https://www.databricks.com/product/databricks-sql
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COASTAL

COMMUNITY BANK®

INDUSTRY
Financial Services

SOLUTION

Financial Crimes Compliance,
Customer Profile Scoring, Financial
Reconciliation, Credit Risk
Reporting, Synthesizing Multiple
Data Sources, Data Sharing and
Collaboration

PLATFORM
Delta Lake, ETL, Delta Sharing, Data
Streaming, Databricks SQL

CLOUD
Azure
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Coastal Community Bank — mastering the modern data platform
for exponential growth

<10 99% 12X

Faster partner onboarding by
eliminating sharing complexity

Decrease in processing
duration (2+ days to 30 min.)

Minutes to securely share large
datasets across organizations

“We've done two years’ worth of work here in nine months. Databricks enables access to
a single source of truth and our ability to process high volumes of transactions that gives
us confidence we can drive our growth as a community bank and a leading banking-as-a-
service provider.”

— Curt Queyrouze, President, Coastal Community Bank

Many banks continue to rely on decades-old, mainframe-based platforms to support their back-end operations. But banks
that are modernizing their IT infrastructures and integrating the cloud to share data securely and seamlessly are finding they
can form an increasingly interconnected financial services landscape. This has created opportunities for community banks,
fintechs and brands to collaborate and offer customers more comprehensive and personalized services. Coastal Community
Bank is headquartered in Everett, Washington, far from some of the world'’s largest financial centers. The bank’s CCBX division
offers banking as a service (BaaS) to financial technology companies and broker-dealers. To provide personalized financial
products, better risk oversight, reporting and compliance, Coastal turned to the Databricks Data Intelligence Platform and
Delta Sharing, an open protocol for secure data sharing, to enable them to share data with their partners while ensuring

compliance in a highly regulated industry.


https://www.databricks.com/solutions/industries/financial-services
https://www.databricks.com/solutions/industries/telco-industry-solutions
https://www.databricks.com/product/delta-lake-on-databricks
https://www.databricks.com/solutions/data-engineering
https://www.databricks.com/product/delta-sharing
https://www.databricks.com/product/data-streaming
https://www.databricks.com/product/data-streaming
https://www.databricks.com/product/databricks-sql
https://www.databricks.com/product/azure
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LEVERAGING TECH AND INNOVATION TO FUTURE-PROOF
A COMMUNITY BANK

Coastal Community Bank was founded in 1997 as a traditional brick-and-mortar
bank. Over the years, they grew to 14 full-service branches in Washington state
offering lending and deposit products to approximately 40,000 customers.

In 2018, the bank’s leadership broadened their vision and long-term growth
objectives, including how to scale and serve customers outside their traditional
physical footprint. Coastal leaders took an innovative step and launched a plan
to offer BaaS through CCBX, enabling a broad network of virtual partners and
allowing the bank to scale much faster and further than they could via their
physical branches alone.

Coastal hired Barb MacLean, Senior Vice President and Head of Technology
Operations and Implementation, to build the technical foundation required

to help support the continued growth of the bank. “Most small community
banks have little technology capability of their own and often outsource tech
capabilities to a core banking vendor,” says MacLean. “We knew that story had
to be completely different for us to continue to be an attractive banking-as-a-

service partner to outside organizations.”
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To accomplish their objectives, Coastal would be required to receive and send
vast amounts of data in near real-time with their partners, third parties and the
variety of systems used across that ecosystem. This proved to be a challenge

as most banks and providers still relied on legacy technologies and antiquated
processes like once-a-day batch processing. To scale their BaaS offering, Coastal
needed a better way to manage and share data. They also required a solution
that could scale while ensuring that the highest levels of security, privacy and
strict compliance requirements were met. “The list of things we have to do to
prove that we can safely and soundly operate as a regulated financial institution
is ever-increasing,” says MaclLean. “As we added more customers and therefore

more customer information, we needed to scale safely through automation.”

Coastal also needed to accomplish all this with their existing small team. “As
a community bank, we can't compete on a people basis, so we have to have
technology tools in place that teams can learn easily and deploy quickly,”

adds Maclean.

TACKLING A COMPLEX DATA ENVIRONMENT WITH
DELTA SHARING

With the goal of having a more collaborative approach to community banking
and banking as a service, Coastal began their BaaS journey in January 2023 when
they chose Cavallo Technologies to help them develop a modern, future-proof
data platform to support their stringent customer data sharing and compliance
requirements. This included tackling infrastructure challenges, such as data
ingestion complexity, speed, data quality and scalability. “We wanted to use our
small, nimble team to our advantage and find the right technology to help us

move fast and do this right,” says MacLean.
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“We initially tested several vendors, however learned through those tests we
needed a system that could scale for our needs going forward,” says MacLean.
Though very few members of the team had used Databricks before, Coastal
decided to move from a previously known implementation pattern and a data
lake—based platform to a lakehouse approach with Databricks. The lakehouse
architecture addressed the pain points they experienced using a data lake—
based platform, such as trying to sync batch and streaming data. The dynamic
nature and changing environments of Coastal’s partners required handling
changes to data structure and content. The Databricks Data Intelligence Platform
provided resiliency and tooling to deal with both data and schema drift cost-

effectively at scale.

Coastal continued to evolve and extend their use of Databricks tools, including
Auto Loader, Structured Streaming, Delta Live Tables, Unity Catalog and
Databricks repos for CI/CD, as they created a robust software engineering
practice for data at the bank. Applying software engineering principles to data
can often be neglected or ignored by engineering teams, but Coastal knew that
it was critical to managing the scale and complexity of the internal and external
environment in which they were working. This included having segregated
environments for development, testing and production, having technical leaders
approve the promotion of code between environments, and include data privacy

and security governance.

Coastal also liked that Databricks worked well with Azure out of the box.

And because it offered a consolidated toolkit for data transformation and
engineering, Databricks helped address any risk concerns. “When you have a
highly complex technical environment with a myriad of tools, not only inside
your own environment but in our partners’ environments that we don't control,
a consolidated toolkit reduces complexity and thereby reduces risk,”

says MacLean.
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Initially, MacLean’s team evaluated several cloud-native solutions, with the goal

of moving away from a 24-hour batch world and into real-time data processing
since any incident could have wider reverberations in a highly interconnected
financial system. “We have all these places where data is moving in real time.
What happens when someone else’s system has an outage or goes down in the
middle of the day? How do you understand customer and bank exposure as soon
as it happens? How do we connect the batch world with the real-time world? We
were trapped in a no-man’'s-land of legacy, batch-driven systems, and partners
are too,” explains MacLean.

“We wanted to be a part of a community of users, knowing that was the future,
and wanted a vendor that was continually innovating,” says MacLean. Similarly,
Maclean's team evaluated the different platforms for ETL, BIl, analytics and data
science, including some already in use by the bank. “Engineers want to work with
modern tools because it makes their lives easier ... working within the century in
which you live. We didn’t want to Frankenstein things because of a wide toolset,”
says Maclean. “Reducing complexity in our environment is a key consideration,
so using a single platform has a massive positive impact. Databricks is the hands-
down winner in apples-to-apples comparisons to other tools like Snowflake and
SAS in terms of performance, scalability, flexibility and cost.”

MacLean explained that Databricks included everything, such as Auto Loader,
repositories, monitoring and telemetry, and cost management. This enabled the
bank to benefit from robust software engineering practices so they could scale
to serving millions of customers, whether directly or via their partner network.
MacLean explained, “We punch above our weight, and our team is extremely
small relative to what we're doing, so we wanted to pick the tools that are

applicable to any and all scenarios.”
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The Databricks Data Intelligence Platform has greatly simplified how Coastal and
their vast ecosystem of financial service partners securely share data across

data platforms, clouds or regions.
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IMPROVING TIME TO VALUE AND GROWING THEIR
PARTNER NETWORK

In the short time since Coastal launched CCBYX, it has become the bank’s primary
customer acquisition and growth division, enabling them to grow BaaS program

fee income by 32.3% year over year. Their use of Databricks has also helped them
achieve unprecedented time to value. “We've done two years’ worth of work here

in nine months,” says Curt Queyrouze, President at Coastal.

Almost immediately, Coastal saw exponential improvements in core business
functions. “Activities within our risk and compliance team that we need to
conduct every few months would take 48 hours to execute with legacy inputs,”

says MaclLean. "Now we can run those in 30 minutes using near real-time data.”

Despite managing myriad technology systems, Databricks helps Coastal remove
barriers between teams, enabling them to share live data with each other safely
and securely in a matter of minutes so the bank can continue to grow quickly
through partner acquisition. “The financial services industry is still heavily reliant
on legacy, batch-driven systems, and other data is moving in real time and
needs to be understood in real time. How do we marry those up?” asks MacLean.
“That was one of the fundamental reasons for choosing Databricks. We have not

worked with any other tool or technology that allows us to do that well.”
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CCBX leverages the power and scale of a network of partners. Delta Sharing uses
an open source approach to data sharing and enables users to share live data
across platforms, clouds and regions with strong security and governance. Using
Delta Sharing meant Coastal could manage data effectively even when working
with partners and third parties using inflexible legacy technology systems. “The
data we were ingesting is difficult to deal with,” says MaclLean. “How do we
harness incoming data from about 20 partners with technology environments
that we don't control? The data’s never going to be clean. We decided to make
dealing with that complexity our strength and take on that burden. That's where
we saw the true power of Databricks’ capabilities. We couldn’t have done this

without the tools their platform gives us.”

Databricks also enabled Coastal to scale from 40,000 customers (consumers
and small-medium businesses in the north Puget Sound region) to approximately
6 million customers served through their partner ecosystem and dramatically
increase the speed at which they integrate data from those partners. In one
notable case, Coastal was working with a new partner and faced the potential of
having to load data on 80,000 customers manually. “We pointed Databricks at it
and had 80,000 customers and the various data sources ingested, cleaned and
prepared for our business teams to use in two days,” says MacLean. “Previously,
that would have taken one to two months at least. We could not have done that

with any prior existing tool we tried.”
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With Delta Sharing on Databricks, Coastal now has a vastly simplified, faster

and more secure platform for onboarding new partners and their data. “When
we want to launch and grow a product with a partner, such as a point-of-sale
consumer loan, the owner of the data would need to send massive datasets

on tens of thousands of customers. Before, in the traditional data warehouse
approach, this would typically take one to two months to ingest new data
sources, as the schema of the sent data would need to be changed in order for
our systems to read it. But now we point Databricks at it and it's just two days to
value,” shares MacLean.

While Coastal’s data engineers and business users love this improvement in
internal productivity, the larger transformation has been how Databricks has
enabled Coastal’s strategy to focus on building a rich partner network. They now
have about 20 partners leveraging different aspects of Coastal’s BaaS.

Recently, Coastal's CEO had an ask about a specific dataset. Based on
experience from their previous data tools, they brought in a team of 10 data
engineers to comb through the data, expecting this to be a multiday or even
multi-week effort. But when they actually got into their Databricks Data
Intelligence Platform, using data lineage on Unity Catalog, they were able to

give a definitive answer that same afternoon. MacLean explains that this is not
an anomaly. “Time and time again, we find that even for the most seemingly
challenging questions, we can grab a data engineer with no context on the data,

point them to a data pipeline and quickly get the answers we need.”
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The bank’s use of Delta Sharing has also allowed Coastal to achieve success
with One, an emerging fintech startup. One wanted to sunset its use of Google
BigQuery, which Coastal was using to ingest One's data. The two organizations
needed to work together to find a solution. Fortunately, One was also using
Databricks. “We used Delta Sharing, and after we gave them a workspace ID, we
had tables of data showing up in our Databricks workspace in under 10 minutes,”
says MacLean. (To read more about how Coastal is working with One, read the
blog.) MacLean says Coastal is a leader in skills, technology and modern tools for

fintech partners.

DATA AND Al FOR GOOD

With a strong data foundation set, MacLean has a larger vision for her team.
“Technologies like generative Al open up self-serve capabilities to so many
business groups. For example, as we explore how to reduce financial crimes, if
you are taking a day to do an investigation, that doesn’t scale to thousands of
transactions that might need to be investigated,” says MacLean. “"How do we
move beyond the minimum regulatory requirements on paper around something
like anti-money laundering and truly reduce the impact of bad actors in the

financial system?”

For MacLean this is about aligning her organization with Coastal’s larger mission
to use finance to do better for all people. Said MacLean, “Where are we doing
good in terms of the application of technology and financial services? It's not
just about optimizing the speed of transactions. We care about doing better on
behalf of our fellow humans with the work that we do.”
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https://www.databricks.com/blog/coastal-community-bank-builds-thriving-financial-ecosystem-databricks-data-intelligence
https://www.databricks.com/blog/coastal-community-bank-builds-thriving-financial-ecosystem-databricks-data-intelligence
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Powys Teaching Health Board — improving decision-making
to save lives faster

<1lyear 40% 65%

To modernize data Decrease in time More productive with
infrastructure to insight Databricks Assistant

“The adoption of Databricks has ensured that we can future-proof our data capabilities.
It has transformed and modernized the way we work, and that has a direct impact on the
quality of care delivered to our community.”

— Jake Hammer, Chief Data Officer, Powys Teaching Health Board (PTHB)

The inability to access complete and high-quality data can have a direct impact on a healthcare system'’s ability to deliver
optimal patient outcomes. Powys Teaching Health Board (PTHB), serving the largest county in Wales, is responsible for
planning and providing national health services for approximately a quarter of the country. However, roughly 50% of the data
they need to help inform patient-centric decisions doesn’t occur within Powys and is provided by neighboring organizations
in varying formats, slowing their ability to connect data with the quality of patient care. Converting all this data — from
patient activity (e.g., appointments) and workforce data (e.g., schedules) — to actionable insights is difficult when it comes

in from so many disparate sources. PTHB needed to break down these silos and make it easier for nontechnical teams to
access the data. With the Databricks Data Intelligence Platform, PTHB now has a unified view of all their various data streams,

empowering healthcare systems to make better decisions that enhance patient care.


https://www.databricks.com/solutions/industries/healthcare-and-life-sciences
https://www.databricks.com/solutions/accelerators/forward-looking-intelligence
https://www.databricks.com/solutions/industries/telco-industry-solutions
https://www.databricks.com/product/data-intelligence-platform
https://www.databricks.com/product/unity-catalog
https://www.databricks.com/product/azure
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SILOS AND SYSTEM STRAIN HINDER
DATA-DRIVEN INSIGHTS

The demand for PTHB's services has increased significantly over the years as
they’ve dealt with evolving healthcare needs and population growth. As new
patients enter the national healthcare system, so does the rise in data captured
about the patient, hospital operations and more. With this rapid influx of data
coming from various hospitals and healthcare systems around the country,
PTHB's legacy system began to reach its performance and scalability limits,
quickly developing data access and ingestion bottlenecks that not only wasted
time, but directly impacted patient care. And as the diversity of data rose, their
legacy system buckled under the load.

“Our data sat in so many places that it caused major frustrations. Our on-
premises SQL warehouse couldn’t cope with the scale of our growing data
estate,” explained Jake Hammer, Chief Data Officer at PTHB. “We needed to move
away from manually copying data between places. Finding a platform that would
allow us to take advantage of the cloud and was flexible enough to safeguard our

data within a single view for all to easily access was critical.”

How could PTHB employees make data-driven decisions if the data was hard
to find and difficult to understand? Hammer realized that they needed to first
modernize their data infrastructure in the cloud and migrate to a platform
capable of unifying their data and making it readily available for downstream
analytics use cases: from optimizing staff schedules to providing actionable
insights for clinicians so they can provide timely and targeted care. Hammer’s
team estimated that it would take five to 10 years to modernize their tech stack
in this way if they were to follow their own processes and tech stack. But they

needed a solution now. Enter Databricks.
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IMPROVING DATA DEMOCRATIZATION WITH
A UNIFIED PLATFORM

PTHB chose the Databricks Data Intelligence Platform to house all new incoming
data, from any source. This includes the data for a large number of low-code
apps (e.g., Power Apps) so that Hammer's team can now work with data that was
historically kept on paper — making it significantly easier for people to access

and analyze the data at scale.

Data governance is also critical, but creating standard processes was difficult
before transitioning to Databricks as their core platform. With Unity Catalog,
PTHB has a model where all of their security and governance is done only
once at the Databricks layer. “The level of auditing in Databricks gives us a
high level of assurance. We need to provide different levels of access to many
different individuals and systems,” added Hammer. “Having a tool that enables
us to confidently manage this complex security gives both ourselves and our
stakeholders assurance. We can more easily and securely share data with

partners.”

Deriving actionable insights on data through numerous Power Bl dashboards with
ease is something PTHB could not do before. “Now HR has the data they need to
improve operational efficiency while protecting the bottom line,” said Hammer.
“They can self-serve any necessary data, and they can see where there are gaps
in rosters or inefficiencies in on-the-ground processes. Being able to access the
right data at the right time means they can be smarter with rostering, resource

management and scheduling.”
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FEDERATED LAKEHOUSE IMPROVES TEAM EFFICIENCY
AND REAL-TIME DATA ENHANCES PATIENT CARE

With the Databricks Data Intelligence Platform, PTHB has taken their first step
toward modernization by moving to the cloud in less than a year — a much
quicker timeline than their 10-year estimate — and providing a federated
lakehouse to unify all their data. Through the lakehouse, they are able to
seamlessly connect to their on-premises SQL warehouse and remote BigQuery
environment at NHS Wales to create a single view of their data estate. “With the
Databricks Platform, and by leveraging features such as Lakehouse Federation to
integrate remote data, PTHB data practitioners now work from a single source of

truth to improve decision-making and patient outcomes,” explained Hammer.

From an operational standpoint, the impact of a modern platform has been
significant, with efficiencies skyrocketing to an estimated 40% time savings

in building data pipelines for analytics. They also estimate spending 65% less
time answering questions from business data users with the help of Databricks
Assistant. This Al-powered tool accelerated training for PTHB, helping traditional
SQL staff embrace new programming languages and empowering them to be

more productive without overreliance on the data engineering team.
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A modern stack and newfound efficiencies throughout the data workflow has
fueled Hammer's ability to expand into more advanced use cases. “Data science
was an area we simply hadn’t thought about,” explained Hammer. “Now we have

the means to explore predictive use cases like forecasting feature utilization.”

Most importantly, PTHB has a solution that's future-proof and can tackle any
data challenge, which is critical given how they are seeing a rapidly growing
environment of APIs, adoption of open standards and new sources of real-time
data. “I can trust our platform is future-proof, and I'm probably the only health
board to be able to say that in Wales at the moment,” said Hammer. “Just like with
the data science world, the prediction world was something we never thought
was possible. But now we have the technology to do anything we put our minds

and data to.”



Tens of millions of production workloads run daily on Databricks

Easily ingest and transform batch and streaming data on the Databricks Data Intelligence Platform.
Orchestrate reliable production workflows while Databricks automatically manages your infrastructure
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software development best practices.
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