
Data Governance Architecture
Patterns for Data Architects

eBook

Introduction...4

Unity Catalog Fits Across Cloud Provider Abstractions.. 6
Where Unity Catalog fits within each cloud provider...7

How Unity Catalog abstracts the specifics of each cloud provider..12

Designing Your Three-Level Namespace...14
Naming conventions...15

Common scenarios... 16

General recommendations... 17

Manage Your Data..18
Supported storage types..18

Lakehouse Federation... 22

Securing Your Data...23
Permissions model... 24

Advanced access controls.. 25

Access patterns... 26

Best practices.. 28

Searching for Data..29
Databricks search.. 29

Tags as business taxonomy..31

Data lineage as a search enabler...32

Tracking and Promoting Data Quality...34
Databricks Lakehouse Monitoring... 34

Lineage...37

Auditing Your Data and Its Usage... 40
System tables..40

The audit and information schema system tables...40

Questions for audit logs... 42

Contents

2D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Governing Models and AI..43
Model development, training and evaluation...44

Model Serving.. 45

Security, safety and permissions...46

Sharing Your Data..49
Data sharing with Databricks Delta Sharing.. 52

Security, flexibility and seamless integration with Databricks Delta Sharing...56

Upgrading to Unity Catalog.. 60
The process for upgrading to Unity Catalog..60

Upgrading assets...68

Upgrade challenges and limitations..81

Rollback strategy.. 84

Open Data Accessibility...85
Why open source?..86

Summary..88

Resources..89
Demos...89

Documentation...89

Featured talks..89

About the Authors... 90

Contents

3D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

The dynamic interplay of data, analytics and AI is driving a wave of transformative innovations across diverse

sectors, reshaping revenue streams and redefining corporate management paradigms.

Governance ensures data and AI products are consistently developed and maintained, adhering to precise

guidelines and standards. It’s the blueprint for organizations to bring solutions and data vision to life with

consistency, guidelines and standards. It enables scale and speed for data engineers through repeatable

workflow management. It allows you to collaboratively build and operationalize AI models for data scientists

with transparency. It’s security for data managers, ensuring data assets are shared far and wide to benefit all,

yet are private when needed. It’s trust for executives, with transparency of business insights based on their

data and AI assets. It also drives operational efficiency for finance, particularly when powered by Databricks

Unity Catalog.

This eBook provides practitioners with tools, tips, best practices and methodologies that drive successful data

and AI governance implementation using Unity Catalog. Additionally, it uncovers the role of the Databricks Data

Intelligence Platform as a catalyst for streamlining these transformative efforts. As organizations navigate an

era characterized by AI-centric data strategies, the convergence of innovation and governance becomes the

foundation for sustainable growth and responsible technological advancement.

Databricks Unity Catalog is the industry’s only unified governance solution for all of a company’s data and

AI — across clouds and data platforms. Its foundation is the Databricks Data Intelligence Platform, which

understands the uniqueness of your data — and drives the most comprehensive and unified governance

solution for all of your company’s data and AI. And it’s built on a lakehouse to be open, scalable, low cost and

high performance — the best of all worlds!

So, what are Unity Catalog’s main value levers?

	■ Mitigating data and architectural risks

	■ Ensuring compliance

	■ Accelerating innovation

	■ Reducing platform complexity and cost while improving operational efficiencies

	■ Enabling collaboration and monetizing the value of data

Introduction

4D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://www.databricks.com/product/unity-catalog
https://www.databricks.com/product/unity-catalog
https://www.databricks.com/product/data-intelligence-platform

How does Unity Catalog specifically provide for these positive outcomes?

	■ It provides a unified view and discovery of the entire data estate for accelerating innovation,

which is quite helpful for data and solution architects. Having a unified solution for access management

and auditing not only lowers license costs (often by 50% or even 90%), but it also enhances data and

AI security

	■ By offering comprehensive data and AI monitoring and reporting, it improves trustworthiness

for nontechnical users and experts alike

	■ By providing a collaborative environment — platform agnostic for data and model sharing —

it democratizes every person within a business, unlocking new business values

Throughout, governance is simplified with intelligence. Data intelligence enables context-aware search

using AI-powered knowledge engines. It automatically generates AI-enhanced descriptions, comments

and documentation. It finds data using natural language — so that nontechnical people can ask questions

themselves — without having to go through their IT staff to create SQL queries. Questions like, “Which

marketing campaigns are most successful?” or “What vendors have been least productive across my supply

chain?” This is finally the real-life democratization of data.

The democratization is broad — Unity Catalog unifies data and AI-enhanced governance across BI, data

warehousing, data engineering, data streaming, data science and ML. It provides views and controls across all

structured, semi-structured, unstructured and streaming data, as well as AI models, notebooks, workplaces,

files, tables and dashboards. It provides more informative and actionable oversight through AI-enhanced

holistic search, discovery and monitoring of usage trends, data lineage, discovery and model transparency.

Whether with natural language or with SQL, organizations that harness this transformative AI-enhanced

technology successfully unleash all of their data assets and become leaders for the future.

5D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

The Databricks Data Intelligence Platform is a cloud-native data platform available on all three major cloud

providers: AWS, Azure and GCP. Customers have the flexibility to choose their preferred cloud provider when

deploying Databricks, with a consistent experience across each of them. They can also opt for a multicloud

strategy, seamlessly executing and integrating workloads across different providers.

In this context, effective data governance is essential for organizations relying on data, analytics and AI,

yet challenges persist in implementation due to inadequate organizational processes and resources. These

challenges are often exacerbated by the evolving role of chief data officers (CDOs). As a result, governance

responsibilities often remain decentralized, leading to policy variations and multiple governing bodies across

organizational divisions. This lack of centralized data governance function is termed distributed governance.

Within the Data Intelligence Platform, we facilitate the implementation of a distributed governance model by

leveraging Unity Catalog.

Unity Catalog enables the management of structured and unstructured data, as well as AI models within

Databricks and external sources, under a single governance framework. Unity Catalog creates a consistent

experience across cloud providers, abstracting many specifics across access, governance and identity. In this

initial chapter, we delve into the specific aspects of each major cloud provider — AWS, Azure and GCP — and

explore how Unity Catalog aligns with them.

Unity Catalog
Fits Across
Cloud Provider
Abstractions

6D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Where Unity Catalog fits within each cloud provider
Before Unity Catalog, each Databricks workspace functioned monolithically, with support for dedicated users,

pipelines, clusters, SQL warehouses and the concept of a local-to-workspace metastore. With Unity Catalog,

the Databricks estate is unified for data and users, allowing these concepts to be shared across workspaces.

Workspaces, in turn, continue to support the organization and isolation of nondata, workloads and compute.

With Unity Catalog, the concept of the Databricks account gains increased significance compared to before.

Now, users and metastore reside within the Databricks account, positioned one level above the workspaces.

This new architecture also alters the distribution of responsibilities within Databricks. While the workspace

admin previously held the sole administrative role, the introduction of the account admin role adds a new

layer. The workspace admins retain control over individual workspaces, including user assignments and

compute resource management. In contrast, the account admin oversees permissions related to data within

Unity Catalog across all metastores, as well as other broader capabilities such as network connectivity for

serverless compute that extend beyond a single workspace. Additionally, each metastore features a metastore

admin role responsible for managing the data within it.

7D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Depending on the cloud provider, the Databricks account maps differently, as shown in the following figures.

On Azure, the Databricks account is linked to the Microsoft Entra tenant ID. Any subscription inside the tenant

is mapped to the same Databricks account. Consequently, any workspace in any subscription and resource

group will be able to access the same metastore in the respective regions if admins allow this.

8D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

On AWS, the Databricks account maps to the organizational unit. It’s common on AWS to organize the cloud

environment in different accounts, and you can link one or more of them to your Databricks account so that all

workspaces can access the same metastore.

9D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

On GCP, a Databricks account maps to a Marketplace account. Similarly to AWS, multiple projects on GCP can

be linked to Databricks and all workspaces in them will be aggregated.

10D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

In the context provided, various strategies exist for organizing cloud environments within Azure, AWS or GCP,

typically involving subscriptions, accounts and projects. Factors influencing these strategies often include

business units, divisions and environments (such as dev/test/prod or production/non-production). Consider a

scenario where a company organizes Azure subscriptions based on business units and environments. In this

example, business units like HR and Logistics utilize Databricks, each mandated to maintain three environments

categorized in two subscriptions as prod and non-prod: development, test and production. The Databricks

account alignment for this is illustrated in the figure below.

1 1

D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

How Unity Catalog abstracts the specifics of each cloud provider
Each cloud provider employs distinct underlying and proprietary concepts and features that Databricks

utilizes, ranging from authentication methods like identity and access management (IAM) roles and service

principals to storage accounts such as GCS, S3 and ADLS. While Databricks has always functioned as a

multicloud solution, the specifics were previously exposed directly to end users rather than abstracted. For

instance, in AWS, users had to utilize IAM roles configured within clusters to enable access to data in an S3

bucket at a specified path (s3://some-bucket). Similarly, on Azure, configuration of a service principal was

necessary to read from an ADLS Gen2 storage, while on GCP, a service account was required to read from

GCS. In the context of a multicloud data strategy, it becomes evident that such scenarios can quickly become

complicated and confusing for end users. For example, if a user creates a notebook to read from S3, the same

notebook would not function when attempting to access data from ADLS or GCS if moved to a workspace in

another cloud.

With the unified governance facilitated by Unity Catalog, Databricks has also unified the approach to

accessing data and services across different cloud providers, utilizing abstractions that are agnostic to the

chosen provider. These abstractions include credentials for services and storage and external locations.

Administrators only need to engage with the specifics of cloud providers when creating these objects;

thereafter, they can operate within Databricks exclusively.

A service credential is used to access cloud-specific services other than storage such as SQS for AWS or Key

Vault for Azure, via the respective SDKs. Service credentials give a uniformly managed solution to authenticate

via Unity Catalog that is no longer cluster-bound via IAM roles, service principals or service accounts.

In a similar way, a storage credential functions like service credentials but is specific to storage, acting

as a secure container that embeds the authentication mechanism for Unity Catalog when accessing it.

This authentication is implemented as an IAM role on AWS, a managed identity on Azure and a service

account on GCP.

Once authentication means are established, administrators require another secure element, the external

location, to map the storage credential to a specific storage account. Administrators assign the storage

credential to a particular S3 bucket, ADLS Gen2 or GCS when creating an external location.

D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

With these two secure elements in place, end users can interact with their data independently from the cloud

provider. Administrators grant end users permission to utilize external locations, enabling them to create tables

and volumes for accessing structured and unstructured data, respectively.

In summary, Unity Catalog aligns with various cloud provider models and further provides mapping concepts

from cloud provider storage and access abstractions into its hierarchy. This eases the burden of administration

by allowing users to manage access and data in one place in a governed, secure and scalable way without

requiring cloud-specific knowledge.

13D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Unity Catalog provides a three-level namespace that can be used to represent a logical layout of how data is

accessible and managed in your organization. The three levels are catalogs, schemas and assets.

Catalogs represent the top level of the structure. They can be made available for selective workspaces, which

allows different operating units to enforce that their data is only available within their environments. This also

allows teams to enforce the availability of data across software development lifecycle (SDLC) scopes (e.g.,

prod data in prod, dev data in dev).

Schemas are defined inside the catalogs. They can serve as a grouping for per-domain data assets.

Assets are inside schemas. They include the following objects:

	■ Data assets: Tables, views, materialized views, streaming tables

	■ Machine learning models

	■ Unity Catalog Volumes: These are logically assigned to a specific catalog and schema and represent

folders with files (e.g., images or documents)

	■ Functions: Reusable procedures that can be written in SQL and Python

Designing Your
Three-Level
Namespace

14D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

15D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Catalogs can also be internal and foreign, depending on the data source.

Internal catalogs are created, owned and registered within the metastore based on data stored in relevant

cloud storage. Foreign catalogs can originate from federated SQL databases or other metastores.

Unity Catalog supports two types of foreign catalogs: Delta shares registered as catalogs and foreign catalogs

registered via Lakehouse Federation.

Naming conventions
When building the logical structure of the catalogs, consider the following axes of potential separation.

	■ Region: The region in which the data of a catalog is physically stored. This indication is quite

useful when a multicloud (or multiregional) organization requires registering foreign catalogs

from different regions.

	■ Provisioner: The division responsible for providing this asset (e.g., is it a business unit or a central data

team of the platform).

	■ Environment: Indicates separate dev, staging and prod environments.

	■ Logical data domain: Identifies inside business units or cross-unit teams.

Using these rules, we can combine catalog names into the following naming convention:

{region}_

{provisioner}_

{environment}.{team_name or domain_name}.{asset_name}

Common scenarios
Following are some scenarios that allow us to conceptualize these naming conventions.

	■ Naming by Business Unit: An internal catalog with data provided from a business unit (BU) named BU1,

with data related to marketing domain, inside the prod environment

Since the table is in the internal catalog, we can omit the region name to avoid creating a long name.

Applying our naming convention logic, the name for this catalog would look like this:

Bu1_prod.marketing.some_table_name

	■ Naming by Region: A foreign catalog, sourced from region R1, distributed by the central team, with data

related to the finance topic for dev environment

r1_central_dev.finance.some_table_name

	■ Naming by Multicloud or Multiregion: A multicloud and multiregional organization, which has several

separate data platforms, and each part of the platform is represented inside each region

The generic structure of such a scenario would look like this:

{cloud}_{region}_{team}_{env}.{domain}.{asset_name}

16D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

It’s also important to understand how the logical blocks should be distributed in terms of ownership. This topic

is extensively covered in the following chapters, but the overall layout is shown in the figure below.

General recommendations
When designing the catalog/schema structure, there are a few important aspects to keep in mind.

	■ Strike a balance: It’s better to have a balance between the amount of catalogs and the number of

schemas inside them. For example, choosing between 10 to 20 catalogs with thousands of schemas

inside them or 200 to 300 catalogs with 100 to 200 schemas. This will increase the manageability

of the setup.

	■ Work with catalogs: Catalogs serve as a very convenient boundary for teams using a Data Mesh

architecture. Self-service teams can have their own catalogs and set up their own logical grouping

inside these catalogs without having to reach out to account and metastore admins for changes.

	■ Use automation tooling: When it comes to managing the catalog structure at scale, we strongly

recommend you use automation tooling. Databricks provides capabilities to create, control and manage

catalogs and schemas via Databricks Terraform Provider. For advanced cases and integrations with

third-party systems, you should use Databricks Rest API, and in particular, Databricks Python SDK.

17D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

In this chapter, we’ll review various types of data and the relevant functionality provided by Unity Catalog

to access and govern them in a secure fashion.

Supported storage types
For data sources that can be accessed and governed via Unity Catalog, we can classify the potential storage

types into the following categories:

	■ Cloud storages with structured data

	■ Cloud storages with unstructured data

	■ Relational databases with structured data

Given these types, we can easily map to different technologies provided within Unity Catalog:

1.	 Cloud storages with structured data: Delta tables, as well as structured file formats like Parquet, are

usually stored inside the cloud storage, in some kind of path-like layout, for instance:

/org-root/teamA/events/ contains a Delta table with _delta_log folder and Parquet files

To access and govern such data, use external locations in combination with storage credentials.

2.	Cloud storages with unstructured data: Unstructured data (e.g., images or PDF files) is also stored in

the cloud storage:

/org-root/teamB/docs contains hundreds of PDF files

Unstructured data is a core object in Unity Catalog. Access and governance for such folders (or

subpaths) is governed via Unity Catalog Volumes.

3.	Relational databases with structured data: Relational databases such as MySQL can store schemas

with tables inside them. Usually such databases store structured information. To access, govern and

control data from relational databases such as MySQL, Postgresql, SQL Server and more, Unity Catalog

provides the Lakehouse Federation feature.

Manage
Your Data

18D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

EXTERNAL LOCATIONS AND STORAGE CREDENTIALS

To access the data inside the same cloud region as the Unity Catalog metastore, the following is required:

	■ Storage credentials: These represent relevant cloud-level entities that are entitled to read the data on

behalf of the users. For example, on AWS this role is dedicated to IAM roles, and on Azure these entities

are managed identities (and service principals in rare cases).

	■ External locations: These are cloud storage objects (e.g., buckets, containers or subpaths inside these

buckets or containers) that can be accessed by users through Unity Catalog. External locations can’t be

registered without a storage credential.

A combination of these entities is typically how teams access their existing data on the cloud storage in

a secure way. For better manageability, multiple external locations can use the same storage credential to

access the data as soon as the storage credential is entitled for the relevant operations on the underlying

cloud storage objects.

To provide teams with self-service capabilities, they can be granted permissions to create storage credentials

and external locations. Such a setup allows teams to easily plug in their existing cloud storages without being

dependent on the central platform team.

MANAGED AND EXTERNAL TABLES

Unity Catalog metastore also comes with the capability to register managed storage. Managed storage is

still storage located on the data plane (in the customer object storage), but it doesn’t require users to create

folder-level structures to separately store the data.

Unity Catalog supports setting managed storage at several levels:

	■ Metastore: Can have a root managed storage, which needs to be registered during the metastore

creation process. Though this is a simpler approach, enterprise-grade organizations usually require the

data to be stored in logically, per-environment separated cloud object storages.

	■ Catalog-level storage: Can be set when the catalog is created by using the LOCATION clause. This is

the most common way to logically separate the managed storage across the environments and teams,

which also provides a lot of flexibility for their operations.

	■ Schema-level storage: Is used in cases when there’s a strict organizational requirement to store data

even at a schema level inside separated cloud containers or buckets. This may be useful for cases when

teams perform so many IO operations that they may hit the underlying “per-container/per-bucket”

limits of the cloud object storage. To add a managed location to a schema-level storage, the LOCATION

clause should be used when creating a schema.

In practice, catalog-level storage by location is the most commonly used setting for enforcing enough

logical control without introducing too much management overhead.

20D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

21D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Since tables can be both managed and external, some logical questions arise: Which tables shall be used in

which cases, and what are the benefits of using managed tables?

Managed tables shall be used in most cases, specifically when:

	■ Performance of accessing data in these tables is critical for business continuity (e.g., BI and analytics).

In such case, a managed table with powerful features like Predictive Optimization can deliver

lightning-fast analytics at scale.

	■ Overall management of the cloud storage is already (or is becoming) a burden for the platform team.

In this case it would be a question of improving the efficiency of internal processes and decreasing the

dependency on the underlying storage layout.

One use case for an external table is when the table is accessed from a system that’s outside of the

Unity Catalog control and users can’t read data via standard open protocols such as Delta Sharing

and ODBC or JDBC.

GOVERNANCE FOR UNSTRUCTURED DATA USING UNIT Y CATALOG VOLUMES

Given that a lot of modern valuable data can’t easily fit into a table-like format, Unity Catalog comes with a

tool for governing access to unstructured data called a volume.

In short, volumes come on top of the external locations, adding a capability to govern access to the

unstructured data. They also provide FUSE-like access to the data stored in them when they’re accessed via

Databricks clusters.

Volumes are perfect for storing unstructured data and data-related assets such as:

	■ Spark Streaming Checkpoints

	■ Dependent libraries (e.g., jars)

	■ A distribution location for Python packages that are used in the workflows and on

the all-purpose clusters

Lakehouse Federation
Lakehouse Federation provides an interface to easily access data inside relational databases. Databricks offers

federation into external databases like MySQL, PostgreSQL, SQL Server, Snowflake, BigQuery and more.

Foreign catalogs registered inside the Unity Catalog metastore can be further governed on the Unity Catalog

side, which makes access control seamless and integrated with other Unity Catalog tooling.

Lakehouse Federation reduces data fragmentation and access management overhead. Therefore it’s crucial to

incorporate existing sources that can’t be replicated to the data lakehouse into the overall data access pattern

enforced by Unity Catalog.

22D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://docs.databricks.com/en/query-federation/index.html#supported-data-sources

Permissions model
Unity Catalog provides a logical governance layer that abstracts out the file-level access controls. In other

words, regardless of the nature of the datasets, Databricks users no longer need to deal with the data in

terms of files and folders but only as Unity Catalog objects. Moreover, for all the assets cataloged under

Unity Catalog, a single standard governance model applies.

Elaborating on the Unity Catalog governance model, let’s look at the important aspects of the Unity Catalog

permissions model:

	■ Unity Catalog permissions are at the metastore level: Given that Unity Catalog objects are defined

at the metastore level, it’s obvious that the permissions associated with these objects are also defined

at the metastore level. This means that a user will be able to access the objects from any workspace

(associated with that particular metastore) as long as they have permission.

	■ Unity Catalog permissions apply to account-level identities: Permissions on the Unity Catalog

objects can be granted only to the account-level identities. So the first step for granting permission is to

define or provision the identities at the Databricks account level and assign them workspaces through

which users can access the objects.

	■ Privilege inheritance: Privileges are inherited down the Unity Catalog object hierarchy. For instance, if

you provide ALL PRIVILEGES for a user at the catalog level, then the user will have ALL PRIVILEGES for all

the objects within that catalog.

	■ Permission assignment: Granting permissions on an object can only be granted by the identities with

the following permissions.

	■ Owner of the object

	■ Owner of the catalog/schema containing the object

	■ Metastore admin

	■ Dropping an object: Only the object’s owner or the owner of the catalog/schema that contains it can

drop an object.

24D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

25D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Advanced access controls
In addition to granting permissions on objects to individuals and groups, Unity Catalog provides some

advanced controls for managing access.

	■ Row filtering and column masking: Unity Catalog allows for fine-grained access controls in the form of

dynamic row-level security (RLS) and column-level masking (CLM). These can be applied directly to the

tables, preventing the need for data duplication and creating and maintaining views.

	■ Attribute-based access control (ABAC): ABAC allows access control to be conditional based on

broader properties of the user, resource and request. It builds on top of and coexists with the Unity

Catalog core security model, including all privileges. The core concepts of ABAC are attributes, rules and

inheritance. Attributes are derived from the context of the object such as identity, tag and time. Rules

use these attributes to decide access. Rules are inherited down the object hierarchy and coexist with

existing object grants. ABAC provides enhanced capabilities that enable organizations to fulfill complex

governance requirements at scale.

	■

Access patterns
Unity Catalog object hierarchy, permissions model and advanced access control mechanisms pave the way

to various access patterns that simplify the overall governance of data and AI assets. Let’s look at some of the

most common access patterns.

1.	 Isolating assets at the business unit (BU) level: In this pattern, each BU is assigned a set of catalogs

that are independently owned and operated by the business unit. This means the BUs are allowed

to create schemas, tables and other Unity Catalog objects within the assigned catalogs and manage

access to everything under these catalogs. This pattern implements a federated governance approach,

keeping certain aspects of it still centralized. The catalogs can be associated with the object store

that belongs to the BUs by setting the managed locations. Furthermore, the catalogs can be bound

to the corresponding workspaces of the BUs. These measures facilitate strict isolation of assets at the

storage level.

Figure: Business unit–specific catalogs with managed locations and workspace-catalog binding

26D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

2.	Cross-functional access: The power of data lies in how best it can be leveraged. The value of data

increases as more and more use cases are powered by it. This means it’s crucial to provide data to the

relevant teams that can make use of the data, even if they’re not a part of the project or the business

unit that owns the data. Unity Catalog makes it much easier to share data across teams and business

units. For instance, consider a situation where data science or machine learning teams might need

access to the production datasets from another business unit. With Unity Catalog, access to the

datasets can be granted with simple GRANT statements, and the production catalogs can be bound

to the recipient workspaces as read-only catalogs. This creates two layers of protection against

accidental writes while providing secure and easy access to the datasets.

Figure: BU 2 users with access to BU 1 prod catalog with read-only workspace-catalog binding

27D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

3.	Data as products: Data and AI artifacts have emerged as valuable assets that have value beyond

departmental or even organizational boundaries. As a result, the concept of data as a product

(DaaP) is becoming more and more popular, and many organizations are trying to develop data

products and make them available to others. This poses several challenges, including data product

cataloging, discovery, access mechanisms, governance and observability. Unity Catalog can help

address some of these challenges. For details about implementing data products with Databricks,

please refer to this blog post.

These are just a few examples of how the Unity Catalog features and permissions model can be leveraged to

set up different access patterns for easy and secure access to all your data and AI assets. With Unity Catalog,

it’s easy to develop other patterns to address the unique requirements of a given organization.

Best practices
Following are some of the best practices for keeping your data and AI assets secure with Unity Catalog.

	■ Lock down the object store and prevent external data access. The data in the object store associated

with Databricks must be accessible only through Unity Catalog.

	■ Grant access to groups instead of individuals. This practice simplifies permissions management,

especially when onboarding and offboarding users.

	■ Powerful roles such as metastore admin should be granted to an empty group. As needed, a person

or service principal can temporarily be elevated to a metastore admin role. Since metastore admin

is a role with very high privileges, this practice will avoid any accidental incidents and enforce the

least privilege principle. Privileges in Unity Catalog are inherited, so it’s better to provide specific

access based on necessity rather than providing additional privileges to those who don’t need it.

This is known as the least privilege principle. When granting access to Unity Catalog objects, follow

the least privilege principle.

28D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://www.databricks.com/blog/building-high-quality-and-trusted-data-products-databricks

Intelligent search is critical for working effectively with the data and AI assets in the Databricks Data

Intelligence Platform. When considering search capabilities, it’s important to address two critical use cases:

1.	 Navigation: Helping users find what they’re looking for quickly and efficiently. This usually implies the

user already knows precisely what they want to find.

2.	Discovery: Helping users who might have a general notion of what they want but don’t know what

specific things to search for

Databricks search
Databricks search allows users to search for tables registered in Unity Catalog, notebooks, queries,

dashboards, alerts, files, folders, libraries, jobs, repositories, endpoints, models, partners and Databricks

Marketplace listings in your Databricks workspace.

Searching
for Data

29D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

30D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Databricks search leverages DatabricksIQ — the Data Intelligence Engine for Databricks — to provide a more

intelligent AI-powered search experience. AI-generated comments use large language models (LLMs) learned

from multiple sources to automatically add descriptions to tables and columns managed by Unity Catalog.

These comments equip the search engine with an understanding of unique company jargon, metrics and

semantics, providing the context required to make search results more relevant, accurate and actionable.

Databricks search offers semantic search, which interprets the meaning of words and allows natural language

queries. It retrieves semantically similar assets and combines them with keyword searches. For instance, if a

user searched for “What should I use for geographies,” the search engine would focus on “geographies” and

find related terms containing geographic attributes such as cities, countries, territories, geolocations, etc.

Databricks search separates search terms from filters, enhancing natural language queries and search query

understanding. For example, the query “Show me tables about inspections” would yield “inspections” (key

term) and “table” (object type).

Using popularity signals based on user interactions to rank objects, Databricks search delivers improved

relevance with popularity. This method ranks the most popular assets higher, reducing trial and error.

Databricks search also incorporates knowledge cards. When search identifies what you’re looking for with high

confidence, the top search result turns into a knowledge card. These cards provide additional asset metadata

for easier identification of relevant resources.

Tags as business taxonomy
Datasets can be challenging to discover and categorize. Tags are additional metadata that can be attached

to securable Unity Catalog entities to improve various use cases, including governance, search and discovery

of datasets.

To establish a business taxonomy using discovery tags in Databricks, follow these guidelines:

	■ Define tagging standards: Collaborate with stakeholders to define a standardized set of tags that align

with business objectives and regulatory requirements

	■ Apply tags: Use the Databricks tagging feature to label data assets manually or automatically based on

data ingestion workflows

	■ Train users: Educate data users about how to use tags for searching and managing data, ensuring that

everyone understands the tagging system and its benefits

	■ Monitor and refine: Regularly review the tagging system to ensure it meets the evolving needs of the

business. Adjust and add new tags to keep the taxonomy relevant and valuable.

31D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

32D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Data lineage as a search enabler
Data lineage is essential to a pragmatic data management and governance strategy. Following are important

key points for leveraging lineage as a data search enabler.

	■ Tracking data evolution — Lineage allows users to visualize the journey of data from its origin through

various transformations to its final form. This visibility into data evolution helps users search and identify

the datasets relevant to their analysis or business needs.

	■ Supporting data compliance and audit — By providing a clear map of where data comes from

and how it’s processed, lineage helps organizations comply with regulatory requirements. Users can

search for specific datasets and understand their provenance, which is crucial for audit trails and

compliance reporting.

	■ Enabling observability for the data stack — Lineage contributes to the observability of the data stack

by showing how data is used and where it flows. This makes it easier for users to search for data assets

and assess their impact on different parts of the system, such as ML models, dashboards and reports.

	■ Facilitating impact analysis — Before making changes to data assets, users can search and review the

lineage to understand the downstream effects of those changes. This helps manage risks associated

with data modifications and ensures that dependent processes aren’t adversely affected.

	■ Improving data quality assurance — Understanding the lineage of data helps in identifying the

sources of data quality issues. Users can search for and trace errors back to their origins, which is

essential for maintaining the integrity of data pipelines and ensuring the accuracy of analytics.

	■ Enhancing collaboration and knowledge sharing — Lineage provides a shared understanding of data

flows, which is valuable for collaboration across data teams. Users can search for data assets and share

insights about their lineage, promoting knowledge transfer and alignment on data practices.

	■ Integration with other data governance tools — Lineage information can be exported via REST API and

integrated with other data catalogs and governance tools. This allows for a unified view of data lineage

across the entire data ecosystem, enhancing searchability and governance across multiple platforms.

GRANTING BROWSE PERMISSION ACROSS THE DATA ESTATE

With browse permission, users can discover data without having read access to the data. A user can

view an object’s metadata using Catalog Explorer, the schema browser, search results, the lineage graph,

information_schema and the REST API.

Figure: Data lineage for all data and AI assets

33D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Tracking and monitoring data quality is essential for all kinds of data pipelines. It’s an integral part of a modern

and mature data and AI architecture.

Data quality as a practice isn’t a one-time check but a continuum across your data and AI pipelines. It’s also

crucial for machine learning and generative AI in addition to more traditional ETL motions. There’s a known

maxim in the AI world that goes “Garbage in, garbage out,” which refers to the idea that the quality of the data

used to develop a model has a direct impact on the quality of the model output. The same principle applies to

reporting and other downstream decision support systems.

Databricks Unity Catalog provides a host of features dedicated to ensuring the quality of your pipelines can be

accurately measured, monitored, tracked and maintained for any use, from data to features to models.

Databricks Lakehouse Monitoring
Unity Catalog facilitates data quality tracking and monitoring with Databricks Lakehouse Monitoring. This

feature allows you to specify a monitoring endpoint on any given Unity Catalog table or Model Serving

endpoint in your environment.

For example, once a monitoring endpoint is configured on a table, Lakehouse Monitoring calculates a set of

out-of-the box metrics such as min, max and other distributional metrics, including statistical distribution

tests like the Kolmogorov-Smirnov (K-S) test. For a complete list of metrics, you can refer to our Databricks

product documentation. Custom metrics of your choice can also be added. All the information is aggregated

in a dashboard that’s automatically created. This dashboard can be used not only to visualize and track the

evolution of these metrics but also to set alerts via the use of Databricks SQL Alerts. For instance, you could

set an alert, coupled with a variety of webhook options from email, for Slack notifications to let you know when

a certain column in your data is out of range.

Lakehouse Monitoring is a unified data monitoring solution that spans data engineering and ML/AI use cases.

This can be particularly useful for tracking the performance of machine learning models and Model Serving

endpoints by monitoring inference tables that contain model inputs and predictions.

Tracking and
Promoting
Data Quality

34D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://docs.databricks.com/en/lakehouse-monitoring/index.html

When changes in your table’s data distribution or the performance of the corresponding model are detected,

the tables created by Databricks Lakehouse Monitoring can alert you to the change and help you identify

the cause. This can be crucial in identifying and addressing concept drift, which arises when the statistical

properties of the target variable, which the model is trying to predict, change over time in unforeseen ways.

Lakehouse Monitoring also allows you to control the time granularity of observations and set up custom

metrics, providing flexibility in how you track and analyze your data and models. For instance, you can use

it for tables that contain the request log for a model, with each row being a request, and columns for the

timestamp, the model inputs, the corresponding prediction and an optional ground-truth label. Lakehouse

Monitoring then compares model performance and data quality metrics across time-based windows of the

request log.

35D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

36D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Lakehouse Monitoring provides the following benefits for organizations looking to better track, enforce and

monitor data quality best practices:

	■ Comprehensive monitoring — Allows you to monitor the statistical properties and quality of all the

tables in your account. This includes tracking the performance of machine learning models and Model

Serving endpoints by monitoring inference tables that contain model inputs and predictions.

	■ Data confidence — To draw useful insights from your data, you must have confidence in the quality of

your data. Lakehouse Monitoring provides quantitative measures that help you track and confirm the

quality and consistency of your data over time.

	■ Alerts on data changes — When changes in your table’s data distribution or the performance of the

corresponding models are detected, the tables created by Databricks Lakehouse Monitoring can alert

you to the change and help you identify the cause.

	■ Customization — Databricks Lakehouse Monitoring lets you control the time granularity of observations

and set up custom metrics. You can also set slicing expressions to monitor feature subsets of the table

in addition to the table as a whole.

	■ Quality visualization — An automatically generated dashboard visualizes data quality for any Delta

table in Unity Catalog. All metrics are stored in Delta tables to enable ad hoc analyses, custom

visualizations and alerts.

	■ Proactive issue detection — You can proactively discover quality issues before downstream processes

are impacted, ensuring that pipelines run smoothly and machine learning models remain effective over

time.

	■ Serverless — Lakehouse Monitoring is fully serverless, so you never have to worry about infrastructure

or tuning compute configuration.

Lineage
Another crucial feature that Unity Catalog provides to track data quality and facilitate its promotion is lineage.

Any operation in Databricks that’s performed on a Unity Catalog registered table (managed or external) using a

Unity Catalog–enabled cluster is logged. This includes the lineage information.

Lineage within Unity Catalog includes information about upstream and downstream tables. For example,

if a table is the product of a merge between two other tables, this information is captured and queryable,

as is the information about additional artifacts where tables may be used like notebooks, workflows and

dashboards. Lineage extends beyond the table level. Unity Catalog is actually able to provide lineage

information up to the column level, which makes it extremely powerful in terms of identifying data quality

issues with high granularity.

The lineage information captured by Unity Catalog is available via the Databricks UI, but it’s also directly

available through Databricks system tables, namely through the table and column lineage tables. For more

information, you can refer to the system tables documentation. The information is also programmatically

available via the API.

37D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://docs.databricks.com/en/administration-guide/system-tables/lineage.html

Lineage plays a crucial role in AI development, providing a comprehensive view of the data journey from its

original source through all its transformations to the point it’s used in a machine learning model. This visibility

is essential for understanding the impact of data quality on model performance, as well as for troubleshooting

issues that may arise during the model development process.

Lineage information within Databricks can help track different versions of a model, allowing for comparisons

and evaluations of their performance over time. This can be particularly useful in identifying when and why a

model’s performance may have changed, which can inform future model development and refinement.

A powerful tool for auditing purposes, lineage provides a transparent record of the data’s journey, which can

be crucial for regulatory compliance, especially in industries where explainability and accountability

are paramount.

Maintaining data quality is a continuous process, and lineage can support this by highlighting areas where

data quality may be compromised, such as in the data ingestion or transformation stages. By identifying these

areas, teams can take proactive steps to improve data quality, thereby enhancing the overall performance and

reliability of their AI systems.

38D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

39D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Lineage captured through Unity Catalog affords organizations the following benefits with regards to tracking

and promoting data quality:

	■ End-to-end lineage tracking — Unity Catalog captures lineage data across all lakehouse entities,

including notebooks, workflows, dashboards, queries, tables and machine learning models. This end-to-

end visibility helps you understand how data assets are created and used across all languages.

	■ Data governance and discovery — Lineage data is crucial for managing change, ensuring data quality

and implementing data governance in an organization. It aids in data discovery by providing a clear

picture of the data’s origin and its transformation journey.

	■ Problem identification and change management — By tracking the lineage of data, you can identify

issues at their source and manage changes effectively. This allows for impact analysis, helping you

understand the potential consequences of changes in your data.

	■ Integration with other features — Lineage data can be used to support intelligent actions in other

product features, such as data insights or data quality alerting. It can also be integrated with partner

catalog vendors for seamless lineage tracking.

	■ Access and permissions — Lineage data is aggregated across all workspaces attached to a Unity

Catalog metastore, meaning that lineage captured in one workspace is visible in any other workspace

By now it should be evident how Unity Catalog can assist organizations in securing data and AI in a unified

manner at scale. However, implementing security measures does not guarantee immunity from unexpected

events or security incidents. From a security standpoint, many organizations have embraced the “Never trust,

always verify” principle by adopting a zero trust architecture (ZTA) model. The core tenet of the ZTA model

emphasizes that even with robust identity verification, compliance validation before granting access and least

privilege access controls, default trust should be avoided and continuous monitoring of system activities —

including the Databricks Data Intelligence Platform — is essential. In this chapter, we’ll explain how this can be

achieved using Unity Catalog system tables.

System tables
System tables function as a centralized operational data repository, supported by Delta Lake and supervised

by Unity Catalog. They facilitate querying in multiple languages, enabling diverse applications across BI, AI

and even generative AI. Increasingly, customers are utilizing system tables for various purposes, including

usage analytics, consumption/cost forecasting, efficiency analysis, security and compliance audits, service

level objective analytics and reporting, actionable DataOps, and data quality monitoring and reporting.

This consolidation of information for auditing purposes significantly streamlines the tasks of security and

compliance teams. Prior to the introduction of system tables in Unity Catalog, this data was fragmented across

different systems, requiring an ETL process to prepare and render the data usable.

While multiple schemas are available, this chapter predominantly concentrates on the audit and information

schema tables and their role in monitoring and auditing usage of operations conducted on data stored in

Unity Catalog.

The audit and information schema system tables
When auditing data and its usage, the two most critical system tables to consider are system.access.audit,

system.information_schema and all tables under system.information_schema.

The audit system table encompasses more than just data access–related information. It aggregates

all audit logs at both the Databricks workspaces and account levels. Within the account-level logs,

records of all significant data accesses facilitated by Unity Catalog are included. For further details,

see the

https://docs.databricks.com/en/administration-guide/system-tables/audit-logs.html

The following figure illustrates the lifecycle of a query in the Databricks Data Intelligence Platform. It showcases

how Unity Catalog mediates access to underlying data in storage accounts from any compute resource in

Databricks, ensuring permissions are validated against each query. This process enables data availability to the

Unity Catalog audit system table.

Examining the Unity Catalog–related information within the audit log reveals over 100 events, detailing

access to various asset types, including structured (tables/views) and unstructured (volumes) data, as well

as AI models.

On the other hand, the information schema table furnishes details about securables in Unity Catalog across all

catalogs within the metastore. It offers insights into data at rest, with a particular emphasis on schemas, grants

and lineage of various securables within this context.

41D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Questions for audit logs
System administrators, data governance teams or data owners seek to comprehend how the data they

oversee is accessed. They want to monitor access patterns and receive alerts if any unusual activity occurs,

aligning with the ZTA model introduced earlier in the chapter. This approach enhances security by providing

an additional layer of protection, thereby mitigating the risk of security incidents. Proactive monitoring can

take various forms, such as real-time monitoring to respond promptly to potentially harmful events or periodic

assessments to detect any anomalies.

The Databricks Data Intelligence Platform offers comprehensive tools for implementing an alerting system

using data from system tables. Users can employ ETL processes to aggregate data, query it in multiple

languages and configure alerts using internal alerting capabilities. The system is also equipped to take action,

such as revoking permissions, if instructed, when a user accesses a resource they shouldn’t have access to.

The questions that can be addressed using audit logs found in system tables are diverse and contingent

upon the nature of the data within the data platform. The following list categorizes such questions into a

nonexhaustive list of categories:

	■ Proactively identifying flaws in the permissions model

	■ Monitoring access and operations

	■ Tracking alterations to tables and schemas

	■ Detecting new and unexpected access patterns

	■ Monitoring data downloads and uploads

In summary, Unity Catalog system tables provide a powerful tool for organizations to enhance their data

security and governance practices within the Databricks Data Intelligence Platform. By leveraging these tables,

security teams can centralize and streamline their auditing processes, enabling them to gain comprehensive

insights into data access and usage patterns. The integration of a zero trust architecture (ZTA) model further

fortifies this approach, ensuring continuous monitoring and verification of all activities. As organizations

continue to navigate the complexities of data security, the capabilities offered by Unity Catalog system tables

will be instrumental in proactively identifying potential vulnerabilities, monitoring compliance and maintaining

robust security standards at scale.

42D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Unity Catalog offers a suite of features that support generative AI models, enhancing their governance,

deployment and overall lifecycle management. One of the key features is the Model Registry in Unity Catalog,

which extends the benefits of Unity Catalog to ML models. This includes centralized access control, auditing,

lineage and model discovery across workspaces. It also provides namespacing and governance for models,

allowing you to group and govern models at the environment, project or team level.

As organizations look to scale their use of AI, a typical challenge has been bringing decision support systems

based on AI to production. This is where MLOps and extensions of it like LLMOps play a critical role.

These frameworks, when properly implemented, meaningfully integrate data and AI operations,

enhance collaboration and facilitate an efficient iteration loop that prioritizes reproducibility, explainability

and auditability.

Governing
Models and AI

43D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Model development, training and evaluation
In the “Tracking and Promoting Data Quality” chapter, we discussed the benefits of Unity Catalog lineage for

data and model quality monitoring and tracking. This functionality is further enhanced by the use of MLflow,

which allows you to keep track of the experiment and run that produced a model at a given time. You can

use this information to understand the evolution of the model and its performance over time. Even more

practically, this allows you to keep track of model versions and link them to specific data and code versions.

With model versioning, you can more easily compare how changes in parameters, data and code impact the

overall performance of your models.

Unity Catalog unifies the management of modeling resources by giving development teams the option of

having data, embeddings and models under a single schema. This extends the cataloging capabilities of data

that is both structured (tables) and unstructured (volumes) to AI models.

This also aids in scalability and discoverability because as an organization’s data needs grow, so too does the

number of AI assets. A well-architected Unity Catalog structure helps manage this growth, ensuring that the

number of use cases can scale smoothly without becoming unmanageable.

44D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Model Serving
Model Serving in Unity Catalog offers a multitude of benefits that streamline the deployment, governance

and querying of AI models. It provides a unified interface that allows you to manage all models in one location

and query them with a single API, regardless of whether they’re hosted on Databricks or externally. This

simplifies the process of experimenting with, customizing and deploying models in production across various

clouds and providers.

Through native integration with the Databricks feature store and Databricks Vector Search, Model Serving also

simplifies the integration of features and embeddings into models. This allows for improved accuracy and

contextual understanding, as models can be enhanced with additional context — for example when leveraging

a RAG–based approach or fine-tuned with proprietary data — and deployed effortlessly.

Furthermore, the Model Serving UI allows you to centrally manage all model endpoints, including those that

are externally hosted. You can manage permissions, track and set usage limits and monitor the quality of all

types of models. This democratizes access to SaaS and open LLMs within your organization while ensuring

appropriate guardrails are in place.

Model deployment via aliases is another feature that enhances the flexibility of model management. If the

default catalog for your workspace is configured to a catalog in Unity Catalog, models registered using MLflow

APIs are registered to Unity Catalog by default.

45D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://www.databricks.com/resources/demos/tutorials/data-science-and-ai/lakehouse-ai-deploy-your-llm-chatbot

Security, safety and permissions
Securing models, AI assets and overall AI safety is an emerging area of focus. Unity Catalog allows for

setting permissions on the use and access to models so that only authorized teams can modify and deploy

selected models.

Moreover, model access to data can also be enforced to follow data access permissions. For example,

consider a model that uses RAG to answer questions about a given subject by using Confluence pages.

With Unity Catalog, data access permissions are respected and enforced throughout the whole chain.

So if a user queries a model, the model crafts its answer using only Confluence pages the user has access to.

Elements of Unity Catalog discussed earlier in this chapter, like lineage and auditability, further enhance

AI safety and security by providing full transparency on who accessed the model, what was done and when

it was done.

This transparency, together with a robust data monitoring, evaluation and alerting system, can be used to

capture issues with model performance and implement the appropriate corrective actions.

46D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Figure: Foundational components of a generic data-centric AI system. Numbers in orange indicate risks identified in that specific system.

47D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

In summary, managing your models with the help of Unity Catalog provides the following benefits:

	■ Centralized access control, auditing, lineage and model discovery — Unity Catalog extends the

benefits of centralized access control, auditing, lineage and model discovery across workspaces to ML

models. It’s compatible with the open source MLflow Python client.

	■ Namespacing and governance for models — You can group and govern models at the environment,

project or team level. This allows for better control and organization of your models.

	■ Chronological model lineage — Unity Catalog tracks which MLflow experiment and run produced the

model at a given time. This helps in understanding the evolution of the model over time.

	■ Model Serving, versioning and deployment via aliases — Unity Catalog supports Model Serving,

versioning and deployment via aliases. For example, you can mark the “Champion” version of a model

within your prod catalog. Models registered using MLflow APIs are registered to Unity Catalog by default.

	■ Sharing models across workspaces — To collaborate with other users on a registered model you

created, you must grant ownership of the model to a group containing yourself and the users you’d like

to collaborate with. Collaborators must also have the USE CATALOG and USE SCHEMA privileges on the

catalog and schema containing the model.

	■ Annotating models — You can provide information about a model or model version by annotating

it. This could include an overview of the problem or information about the methodology and

algorithm used.

48D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

49D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

In today’s digital economy, seamlessly and securely sharing data and AI assets has become crucial for

businesses that want to unlock the full potential of their data. The Databricks Data Intelligence Platform is

designed for open collaboration with partners, customers and vendors. Unlike the restrictive systems of our

competitors, Databricks offers an open platform that facilitates secure data sharing across various regions,

clouds and platforms.

The backbone of this collaboration is Delta Sharing, which provides a flexible, secure method for sharing live

data with any recipient, regardless of their infrastructure. Developed by Databricks and the Linux Foundation,

Delta Sharing is the first open source approach to data sharing across data, analytics and AI. Customers

can share live data and AI assets across platforms, clouds and regions with robust security and governance.

Whether self-hosting the open source project or using the fully managed Delta Sharing on Databricks, both

options provide a platform-agnostic, flexible and cost-effective solution for global data delivery. Databricks

customers benefit from a managed environment that minimizes administrative overhead and integrates

natively with Databricks Unity Catalog, offering a secure data-sharing experience.

Databricks commitment to innovation and collaboration has yielded significant results in the past year, with

the ecosystem seeing impressive growth, including 16,000+ data recipients from a wide range of organizations

that have adopted Delta Sharing to collaborate with partners and customers. Since we announced the open

source Delta Sharing project three years ago, Delta Sharing has also continued to innovate and make it easy for

customers to share live data and AI across platforms, clouds and regions — with no need for replication. We’ve

continued developing new sharing capabilities for both data providers and data recipients, including:

	■ Volume sharing for large amounts of unstructured data (e.g., images, audio, videos or PDF files)

	■ AI Model Sharing for Delta Sharing to easily share models with partners and customers and deploy them

in their Databricks environment

	■ Cross-platform view sharing to securely share views to any recipient across platforms

	■ Cloudflare R2 support to help joint customers take advantage of zero egress fees

Sharing
Your Data

https://www.databricks.com/product/delta-sharing

Databricks Marketplace is powered by Delta Sharing and offers an open marketplace for discovering,

evaluating and installing data and AI assets. Over the past year, Databricks Marketplace has introduced several

new features such as foundation and proprietary AI models on Databricks Marketplace, volume sharing on

Databricks Marketplace (see Shutterstock Uses Volume Sharing for Seamless Collaboration), Databricks to

open sharing, private exchanges and Solution Accelerators to help data consumers discover and evaluate data

products faster and accelerate their analytics and AI initiatives.

Databricks Clean Rooms provides a privacy-safe environment for collaboration for all your data and AI assets

without direct access to sensitive data. Organizations are looking for ways to securely exchange their data and

collaborate with external partners to foster data-driven innovations. In the past, organizations had limited data

sharing solutions, relinquishing control over how their sensitive data was shared with partners, and little to

no visibility into how their data was consumed. This created a risk for potential data misuse and data privacy

breaches. Customers who tried using other clean room solutions have told us these solutions are limited and

don’t meet their needs because they often require all parties to copy their data into the same platform, don’t

allow sophisticated analysis beyond basic SQL queries and offer customers limited visibility or control over

their data.

50D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://www.databricks.com/product/marketplace
https://www.databricks.com/blog/shutterstocks-content-datasets-now-databricks-marketplace
https://www.databricks.com/product/clean-room

Organizations need an open, flexible and privacy-safe way to collaborate on data. Databricks Clean Rooms

meets these critical needs. We recently announced the Public Preview of Databricks Clean Rooms for AWS

and Azure.

	■ Any cloud, any platform: Secure, open, flexible collaboration is powered by Delta Sharing. Databricks

Clean Rooms allows you to collaborate across clouds, regions and even across platforms using the new

Sharing for Lakehouse Federation (see more about Lakehouse Federation).

	■ Any language and workload of your choice: Unlike other data clean rooms on the market, Databricks

Clean Rooms supports any language or workload, including native support for ML and AI with Python.

Databricks Clean Rooms is a flexible, interoperable solution, enabling organizations to collaborate with

anyone, regardless of cloud or platform without the need for replication.

	■ Any scale: Databricks Clean Rooms also supports collaboration and operational capabilities at scale.

With support for APIs, SQL commands and built-in Databricks Workflows orchestration, you can easily

automate Databricks Clean Rooms workloads. Collaborators also get approved output data directly in

their Unity Catalog that can be conveniently used for subsequent use cases. Coming soon, multiple

collaborators can work together in Databricks Clean Rooms.

In this chapter, we’ll explore the security architecture of Delta Sharing through three distinct scenarios:

	■ Databricks customer to Databricks customer

	■ Databricks customer to open sharing

	■ Cross-cloud data sharing

We’ll highlight the advantages of incorporating Delta Sharing into a modern data collaboration strategy, such as

improved operational efficiency through streamlined and secure data exchanges across various platforms and

clouds while minimizing complexity and risk. This robust framework accelerates the time to insight, facilitating

quicker decision-making while ensuring strong privacy protections that build stakeholder trust. Moreover, the

versatility of Delta Sharing supports a wide array of data formats and applications, making it adaptable to

evolving business requirements in a secure manner. Each scenario is accompanied by a customer testimonial

that provides firsthand insight into the transformative impact of the solution.

51D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://www.databricks.com/blog/databricks-clean-rooms-privacy-safe-collaboration-public-preview
https://www.databricks.com/blog/databricks-clean-rooms-privacy-safe-collaboration-public-preview
https://www.databricks.com/blog/announcing-general-availability-lakehouse-federation

Data sharing with Databricks Delta Sharing
The following sections look at Databricks Delta Sharing scenarios, specifically when the data provider is

utilizing the managed version of the Databricks Platform.

DATABRICKS TO DATABRICKS (D2D) DATA SHARING

The Databricks to Databricks (D2D) data sharing scenario illustrates secure, efficient data exchange between

two Databricks customers within the Databricks ecosystem. It features managed connections and a no-token

exchange system, ensuring simplicity and security. Customers benefit from Delta Sharing’s native integration

with Unity Catalog, which offers unified governance and security for sharing operations. Sharing isn’t limited

to data alone — Unity Catalog extends to volumes, notebooks and AI models, showcasing a broad range of

functions. Intra-account sharing is enabled by default, while external sharing requires admin-level access for

activation. Setting up Databricks Delta Sharing requires a Databricks workspace enabled for Unity Catalog

and metastore, along with admin role privileges. Unity Catalog provides a unified governance layer throughout

the sharing process — from creating a recipient and establishing shares to granting access. The Delta Sharing

service processes API requests, performs thorough authorization checks and maintains detailed activity logs,

ensuring transparent and secure operations.

Data access
Unity Catalog plays a crucial role in postauthorization data access. It determines the access method — either

cloud tokens or presigned URLs — based on asset type and sharing arrangement. For cloud tokens, a read-

only, scoped-down SAS token is created by the provider’s Unity Catalog and forwarded to the recipient’s

compute plane, providing secure, limited-time storage access to the table root directory. Similarly, presigned

URLs are generated and sent to the recipient’s compute plane for secure, temporary access to storage files.

This methodology ensures data sharing is both flexible and secure, meeting a wide array of business needs.

52D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

53D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

DATABRICKS TO OPEN (D2O) DATA SHARING

In the Databricks to Open (D2O) data sharing scenario, strict security protocols are upheld for Databricks

customers sharing data with external third-party users not on the Databricks Platform. Recipients can directly

connect to shared data using Delta Sharing connectors that support various systems like pandas, Tableau,

Apache Spark™, Rust and more without needing a specific compute platform.

Upon creating an open recipient in Databricks, a secure, one-time activation URL is generated, allowing the

recipient to download a credential file containing a Delta Sharing endpoint address and a token. Providers

can take immediate action in case of a security breach, such as changing recipient credentials or revoking

read permissions.

Data access workflow
When a recipient queries a shared table using the supported connectors, Delta Sharing verifies the recipient

using tokens from the credential file and provides presigned URLs for accessing the data. This ensures

compatibility with various open source connectors, safeguarding the integrity and security of the

shared assets.

54D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

CROSS-CLOUD DATA SHARING

Many enterprises adopt cross-cloud strategies to support diverse functionalities across different cloud

platforms, facilitate partnerships or integrate data after acquisition. Delta Sharing enables seamless and

secure sharing within and across multiple cloud platforms, ensuring operational continuity, fostering innovation

and driving growth. Delta Sharing cross-platform sharing capabilities support multicloud environments, making

it a clear advantage. It facilitates secure and efficient data exchanges whether within a single cloud or across

multiple cloud platforms. Many customers have reported that Delta Sharing promotes interoperability and

enhances security across their cloud ecosystems.

Network and storage configuration
Delta Sharing integrates seamlessly with the cloud’s native storage security architecture without significant

modifications. Designed for Databricks on Azure, AWS and GCP, it aligns with Unity Catalog’s requirements and

supports data sharing through cloud storage solutions (ADLS Gen2, S3, GCS) using private communication

channels or IP address allowlisting for enhanced security. The network and storage configuration works across

both intracloud and cross-cloud scenarios, ensuring secure data exchange within the same cloud ecosystem

using private endpoints, storage firewalls and network gateways, and leveraging existing cross-cloud private

connections for secure data access across different platforms.

Data filtering
Delta Sharing employs two primary methods for data filtering:

	■ Partition filtering: Shares specific table partitions based on recipient properties, allowing controlled

access to needed data portions

	■ Dynamic views: Enables sharing subsets of data with recipients using dynamic functions like current_

recipient, offering fine-grained control over data access and improved manageability

55D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Security, flexibility and seamless integration with Databricks
Delta Sharing
Data sharing and collaboration across organizations and platforms are vital for modern business operations.

Delta Sharing, a cutting-edge open data sharing protocol, empowers organizations to securely share

and access data across diverse platforms, emphasizing security and scalability without vendor or data

format constraints.

It’s important to focus on exploring data replication options within Delta Sharing, providing architectural

guidance for specific data sharing scenarios. Drawing from our extensive experience with Delta Sharing

clients, our objective is to reduce egress costs and improve performance by offering targeted data replication

alternatives. While live sharing is suitable for many cross-region data sharing scenarios, there are instances

where replicating the entire dataset and establishing a data refresh process for local regional replicas prove

to be more cost efficient. Delta Sharing facilitates this through Cloudflare R2 storage, change data feed (CDF)

Delta Sharing and Delta deep cloning functionalities. These capabilities make Delta Sharing highly valued for its

exceptional flexibility in meeting diverse data sharing needs.

Since its general availability in August 2022, Delta Sharing on Databricks has seen widespread adoption across

various collaboration scenarios. Let’s explore two common architectural patterns where Delta Sharing has

played a pivotal role in enabling and enhancing critical business scenarios:

	■ Intra-enterprise cross-regional data sharing

	■ Data aggregator (hub and spoke) model

INTRA-ENTERPRISE CROSS-REGIONAL DATA SHARING

In this scenario, Delta Sharing enables the sharing of data across regions, such as when a QA team is in

different regions or a reporting team needs global business activity data. Typically, this involves:

	■ Sharing large tables: Sharing large tables in real time, where recipients execute diverse queries with

different predicates. An example is clickstream and user activity data.

	■ Local replication: To enhance performance and manage egress costs, data is replicated to create a

local copy, especially when a significant number of users in the recipient’s region frequently access

these tables.

56D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

In this scenario, the business units for both the data provider and the data recipient share the same Unity

Catalog account but have different metastores on Databricks.

57D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Intraglobal data and AI model sharing
The high-level architecture of the Delta Sharing solution highlights key steps in the process:

1.	 Creation of a share: Live tables are shared with the recipient for immediate data access

2.	On-demand data replication: Generating a regional duplicate of the data improves performance,

reduces the need for cross-region network access and minimizes egress fees

Data replication can be achieved through:

	■ Change data feed (CDF) on a shared table: Sharing table history and enabling CDF for incremental

data updates

	■ Cloudflare R2 with Databricks: Using R2 for large-scale data sharing without egress charges

	■ Delta deep clone: Copying source table data and metadata to the clone target within the same

Databricks cloud account for efficient data refresh

DATA AGGREGATOR (HUB AND SPOKE) MODEL

This scenario involves sharing data with clients, particularly for data aggregator enterprises collecting and

merging data from various sources. This model supports:

	■ Connecting recipients across clouds: AWS, Azure and GCP

	■ Supporting a diverse platform: From Python code to Excel spreadsheets

	■ Scalability: For the number of recipients, shares and data volumes

Using Cloudflare R2 with Databricks simplifies and secures data sharing, eliminating egress fees and complex

data transfers. This integration is currently in Private Preview.

58D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

In conclusion, Delta Sharing is a cornerstone of the Databricks Data Intelligence Platform, offering secure,

flexible and cross-platform data sharing capabilities. Supporting both structured and unstructured data,

as well as AI models, Delta Sharing stands out among data exchange platforms. It’s widely trusted across

industries, as reflected in customer testimonials highlighting its significant impact on operational efficiency

and innovation. As the data sharing landscape evolves, Delta Sharing remains future-proof, prioritizing

security, flexibility and seamless integration across diverse ecosystems and making it an invaluable asset for

enterprises worldwide.

59D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

With Databricks Unity Catalog, governance capabilities have undergone a significant transformation,

overcoming the limitations of the traditional Hive metastore which used to be the default catalog for

Databricks workspaces. Unity Catalog represents a paradigm shift towards a centralized governance

solution compared to the former approach of distributed governance at the workplace level, and it

requires careful planning, attention to detail and collaboration among multiple stakeholders to ensure

successful implementation.

The process for upgrading to Unity Catalog
Upgrading to Unity Catalog is a seamless process enabled by inbuilt capabilities for table migration and by

using utilities like UCX that are purpose-built for the upgrade process. The UCX tool streamlines the process

of assessing existing workspaces to identify assets requiring migration and automates this task. It also aids in

planning the upgrade process and determining its complexity.

Once the assessment is completed, for clarity and ease of understanding, the process can be broken down

into different stages, which are outlined in the following sections.

GLOBAL SETUP

Global setup involves tasks that are performed once for the entire Databricks Unity Catalog upgrade process.

	■ Account console setup: The Databricks account console is the centralized hub to manage all the

workspaces within an enterprise Databricks subscription. An account admin role allows access to the

account console to manage workspaces, users and metastores centrally. Identity federation including

the automated user sync using SCIM is also set up at the account console.

	■ Architecture design: The upgrade of Unity Catalog warrants a well-designed architecture that aligns

with the upgraded governance patterns enforced by Unity Catalog. By adhering to these best practices,

the user experience is optimized, ensuring a smooth transition without impacting existing downstream

consumers of the system.

	■ Set up the metastore: The metastore acts as the top-level container for data governed by Unity

Catalog for a specified cloud region. Unity Catalog metastores register metadata about securable

objects (such as tables, volumes, external locations and shares) and the permissions that govern access

to them.

Upgrading to
Unity Catalog

60D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

PER-APPLICATION TASKS

These tasks are carried out for each individual application during the upgrade process and may vary based

on the deployment architecture, specifically whether one application is part of one workspace or multiple

applications are deployed in the same workspace.

	■ Set up the catalogs: The first layer of the object hierarchy in Unity Catalog is the catalog. It serves as

the top-level container for organizing and managing all data assets, including tables, views, functions,

volumes and machine learning models. By setting up meaningful catalogs, teams can efficiently

structure and govern their data assets, enhancing data discoverability and productivity.

	■ Code changes: The upgrade to Unity Catalog also introduces features such as governed file systems

like volumes, which replace DBFS, and a three-level namespace. This allows for more efficient and

organized data management. However, it’s essential to note that any unsupported code patterns must

be migrated to Unity Catalog–compatible ones. For instance, any RDD operations should be updated to

use DataFrames in the Spark API.

PER-WORKSPACE TASKS

These tasks are completed for each workspace as part of the Databricks Unity Catalog upgrade.

	■ Enable the workspace: A workspace is enabled for Unity Catalog — and in turn identity federation —

when a metastore is attached to the workspace from the account console.

	■ Upgrade tables and workflows: Existing tables can be upgraded, and the process depends on

whether it’s a managed or an external table. Databricks Workflows needs to be updated to use the Unity

Catalog–enabled compute.	

61D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Figure: Unity Catalog upgrade process

IDENTIT Y FEDERATION

When Unity Catalog is enabled for a workspace, it also enables identity federation by default. With identity

federation, you configure Databricks users, service principals and groups once in the account console,

rather than repeating configuration separately in each workspace. This both reduces friction in onboarding

a new team to Databricks and enables you to maintain one SCIM provisioning application with your identity

provider to the Databricks account, instead of a separate SCIM provisioning application for each workspace.

Once users, service principals and groups are added to the account, you can assign them permissions

on workspaces. You can only assign account-level identities access to workspaces that are enabled for

identity federation.

62D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Figure: Identity federation with principals at the account level

63D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Migrate workspace-level SCIM provisioning to the account level
If you have workspace-level SCIM provisioning set up in your workspace, you should set up account-level SCIM

provisioning and turn off the workspace-level SCIM provisioner. Workspace-level SCIM will continue to create

and update workspace-local groups. Databricks recommends using account groups instead of workspace-

local groups to take advantage of centralized workspace assignment and data access management using Unity

Catalog. Workspace-level SCIM doesn’t recognize account groups that are assigned to your identity federated

workspace, so workspace-level SCIM API calls will fail if they involve account groups.

ADMIN ROLES IN DATABRICKS

As part of the upgrade process, a few key users need to be identified for the admin roles within the platform.

The account admin is responsible for:

	■ Creating workspaces

	■ Creating and configuring metastores

	■ Creating users, groups and service principals

	■ Granting users access to workspaces

	■ Setting billing budget threshold alerts

	■ Enabling system tables and delegating access to them

The metastore admin is responsible for:

	■ Creating CATALOG, CONNECTION, STORAGE CREDENTIAL, EXTERNAL LOCATION, FOREIGN CATALOG

	■ Creating SHARE, RECIPIENT, PROVIDER, ALLOWLIST, MATERIALIZED VIEW

	■ Changing OWNER of any securable object

Note: Microsoft Entra ID doesn’t support the automatic provisioning of nested groups to Azure

Databricks. Microsoft Entra ID can only read and provision users that are immediate members of the

explicitly assigned group.

64D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Note: Through their ability to transfer ownership of all objects, metastore admins have the ability to

grant themselves read and write access to any data in the metastore. There’s no direct access by

default. Granting of permissions is audit-logged. A metastore admin role is an optional role, and the

responsibilities can be delegated to another group/user or the workspace admin.

Note: The ownership of the data can be defined at the catalog, schema and table levels. Each

securable object in Unity Catalog has an owner. The owner can be any user, service principal or account

group, known as a principal. The principal that creates an object becomes its initial owner.

The workspace admin is responsible for:

	■ Adding users and groups to workspace

	■ Creating clusters and cluster policies

	■ Changing OWNER of clusters, workflows, notebooks, queries, dashboards

If your workspace was enabled for Unity Catalog automatically, workspace admins have the following privileges

on the attached metastore by default.

	■ Creating CATALOG, EXTERNAL LOCATION, STORAGE CREDENTIAL

	■ Creating CONNECTION, SHARE, RECIPIENT, PROVIDER, MATERIALIZED VIEW

Apart from the admin roles, the data owner role is also available and is responsible for:

	■ Changing ownership of securable objects (CATALOG, SCHEMA, TABLE, VIEW, etc.)

	■ Granting any privilege to any principal

Using the Databricks Labs UCX tool for accelerating migration
UCX is a Databricks Labs project that provides tools to help you assess your environment and help you

upgrade your non-Unity Catalog workspace to Unity Catalog.

65D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://docs.databricks.com/en/data-governance/unity-catalog/ucx.html

Assessing the existing workspace (assessment workflow)
One of the key benefits of the UCX tool is its ability to save time and resources by automatically assessing and

identifying assets that need migration. This allows businesses to focus on other critical aspects of the upgrade

process and make informed decisions about their workspace upgrades. UCX accelerates the Unity Catalog

upgrade process by deploying an assessment job which generates a detailed report on the assets that need

to be migrated.

After the assessment report becomes available, the upgrade planning process can commence by examining

the report for complexity and the number of assets, including tables, groups, storage locations and more. The

Unity Catalog upgrade can be executed on a per-application or per-workspace basis, and it’s recommended

that you carry out the upgrade in a phased manner to reduce downtime during the process.

Figure: Sample UCX assessment report

66D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://docs.databricks.com/en/data-governance/unity-catalog/ucx.html#assessment

67D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Group migration from workspace to the account (group migration workflow)
Unity Catalog introduces identities at the identity federation and account levels, enhancing security and

streamlining access management. Identity federation enables you to configure users, service principals and

groups in the account console and then assign those identities access to specific workspaces. This simplifies

Databricks administration and data governance. However, groups created or synced to existing workspaces

using the SCIM API won’t be supported in Unity Catalog and must be upgraded to the account level to benefit

from these new features.

The UCX tool automates the migration of groups from workspace to the account level and helps you to

upgrade all Databricks workspace assets: legacy table ACLs, entitlements, AWS instance profiles, clusters,

cluster policies, instance pools, Databricks SQL warehouses, Delta Live Tables, jobs, MLflow experiments,

MLflow Model Registry, SQL dashboards and queries, SQL alerts, token and password usage permissions that

are set on the workspace level, secret scopes, notebooks, directories, repositories and files.

Table migration from Hive metastore to Unity Catalog (table migration workflow)
To enable asset governance, existing tables in the Hive metastore must be migrated to Unity Catalog. The

migration process varies depending on whether the table is an external table or a managed table in Hive.

External tables in the Hive metastore are upgraded as external tables in Unity Catalog, using SYNC. Managed

tables in the Hive metastore that are stored in workspace storage (also known as DBFS root) are upgraded as

managed tables in Unity Catalog using DEEP CLONE.

Hive-managed tables must be in Delta or Parquet format to be upgraded. External Hive tables must be in one

of the following data formats:

	■ DELTA

	■ CSV

	■ JSON

	■ AVRO

	■ PARQUET

	■ ORC

	■ TEXT

https://docs.databricks.com/en/data-governance/unity-catalog/ucx.html#group
https://docs.databricks.com/en/data-governance/unity-catalog/ucx.html#table
https://docs.databricks.com/en/sql/language-manual/sql-ref-syntax-aux-sync.html

Note: UCX, like all projects in the Databricks Labs GitHub account, is provided for your exploration only

and isn’t formally supported by Databricks with service-level agreements (SLAs). It’s provided as is. We

make no guarantees of any kind. Don’t submit a Databricks support ticket relating to issues that arise

from the use of this project. Instead, file a GitHub issue. Issues will be reviewed as time permits, but

there are no formal SLAs for support.

Upgrading assets
The following sections document the different assets involved in upgrading to Unity Catalog.

UNIT Y CATALOG ARTIFACT CREATION

There are numerous artifacts that should be created before starting your upgrade process.

Metastore
A metastore is the top-level container that stores metadata about all of your data assets (such as tables,

volumes, external locations and shares) and the access permissions associated with them. You should have

one metastore for each region in which your organization operates. To enable a workspace with Unity Catalog,

you must attach the workspace to a metastore. You can find the steps to create a metastore and attach it to

the workspace in the official documentation.

Storage credentials
Storage credentials authenticate and authorize Databricks to access your data stored in cloud storage.

Principals can be granted access to it. Storage credentials are primarily used to create external locations.

External locations
An external location is a reference to a location in cloud storage. When you create an external location, you

specify the storage credentials to use and the path to the location in the cloud storage.

68D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://github.com/databrickslabs
https://github.com/databrickslabs/ucx/issues/new/choose
https://docs.databricks.com/en/data-governance/unity-catalog/create-metastore.html

Catalogs
A catalog in Databricks is a container for a collection of schemas. It provides a way to organize your databases

in a hierarchical manner, making it easier to manage and access them.

Schemas
A schema in Databricks is a logical grouping of data and AI assets like tables, views, volumes, functions and

models. It provides a way to organize your data and AI assets, making it easier to manage and access them.

Volumes
Volumes are Unity Catalog objects representing a logical volume of storage in a cloud object storage location.

Volumes provide capabilities for accessing, storing, governing and organizing files. Volumes can be either

managed or external.

69D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

70D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

UPGRADING TABLES

When it comes to table upgrade, the main goal is to avoid or minimize data movement as much as possible.

Remember, a table can either be managed or external. The location of the data can either be on DBFS root

storage location, DBFS mounted cloud object storage or directly specified cloud storage (such as S3://, abfss://

or gcs://). The table file format and interface can be a file format such as Delta, Parquet, Avro or an interface

such as Hive SerDe.

For managed tables, there are multiple scenarios:

	■ Tables on DBFS root location: The data files for the managed tables reside within DBFS root, which is

the default location for the Databricks-managed HMS database

	■ Tables on DBFS mounted location: This is when the parent database has its location set to external

paths, e.g., a mounted path from the object store

	■ Tables on cloud storage location: This is when the parent database has its location set to external

paths, e.g., a cloud object store

For external tables, you can have the following scenarios:

	■ Tables on DBFS root location: The data files for the external tables reside within DBFS root, which is

the default location for the Databricks-managed HMS database. The table definition has the “location”

clause which makes the table external.

	■ Tables on DBFS mounted location: This is when the table is created with a location clause with a path

specifying a mounted path from the object store

	■ Tables on cloud storage location: This is when the parent database has its location set to external

paths, e.g., a cloud object store

	■ Hive SerDe tables: These are the tables which were created using the Hive SerDe interface

	■ Azure tables: Tables on Gen 1 blob storage require managed tables to be moved to a Gen 2 blob

storage prior to upgrade in order to avoid a schema error

MIGRATION MATRIX

The following matrices identify the different scenarios and the methodology for upgrading them.

HMS storage format using DBFS root storage

HMS Hive SerDe table

HMS Table Type Target Unity
Catalog Table Type

Target Unity Catalog Data File Format Methodology

Managed External or Managed 1.	 Delta for managed (Preferred)

2.	 As that of the HMS source data file format or Delta
(Preferred) in case of external

Note: Preferably change it to Delta while you’re doing the migration
using CTAS

CTAS

External External or Managed 1.	 Delta for managed (Preferred)

2.	 As that of the HMS source data file format or Delta
(Preferred) in case of external

Note: Preferably change it to Delta while you’re doing the migration
using CTAS

CTAS

HMS Table Type Target Unity
Catalog Table Type

Target Unity Catalog Data File Format Methodology

Hive SerDe
external or
managed

Note: Regardless
of the underlying
storage format, Hive
SerDe follows the
same migration path

External or Managed 1.	 Delta for managed (Preferred)

2.	 As that of the HMS source data file format or Delta
(Preferred) in case of external

Note: Preferably change it to Delta while you’re doing the migration
using CTAS

CTAS

71D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

HMS storage format using DBFS mounted storage

HMS Table Type Target Unity
Catalog Table Type

Target Unity Catalog
Data File Format

Methodology

Managed External As that of the HMS
source data file format

1.	 Run Sync to create Unity Catalog external table

2.	 Convert HMS managed to HMS external (code
provided below)

3.	 Drop HMS table after all dependencies are resolved
so that there’s no way to access the data using HMS
table

4.	 Unmount the mount point after all dependencies are
resolved so that there’s no way to access the data
using mount points

Note: Ensure that the HMS table is dropped individually after
conversion to an external table. If the HMS database/schema was
defined with a location and if the database is dropped with the
cascade option, the underlying data will be lost and the migrated
Unity Catalog tables will lose the data.

Managed Managed Delta CTAS

External External As that of the HMS
source data file format

1.	 Run Sync to create Unity Catalog external table

2.	 Drop HMS table after all dependencies are resolved
so that there’s no way to access the data using
HMS table

3.	 Unmount the mount point after all dependencies are
resolved so that there’s no way to access the data
using mount points

External Managed Delta CTAS

72D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://docs.databricks.com/sql/language-manual/sql-ref-syntax-aux-sync.html
https://docs.databricks.com/en/dbfs/mounts.html#unmount-a-mount-point

HMS storage format using cloud object storage

Use this code to upgrade HMS managed to HMS external:

HMS Table Type Target Unity
Catalog Table Type

Target Unity Catalog
Data File Format

Methodology

Managed External As of the source data
file format

1.	 Run Sync to create Unity Catalog external table

2.	 Convert HMS managed to HMS external (code
provided below)

3.	 Drop HMS table after all dependencies are resolved
so that there’s no way to access the data using
HMS table

Note: Ensure that the HMS table is dropped individually after
conversion to an external table. If the HMS database/schema was
defined with a location and if the database is dropped with the
cascade option, the underlying data will be lost and the migrated
Unity Catalog tables will lose the data.

Managed Managed Delta CTAS

External External As of the source data
file format

1.	 Run Sync to create Unity Catalog external table

2.	 Drop HMS table after all dependencies are resolved
so that there is no way to access the data using
HMS table

External Managed Delta CTAS

1
2
3
4
5
6
7
8
9
10
11

import org.apache.spark.sql.catalyst.catalog.{CatalogTable,
CatalogTableType}
import org.apache.spark.sql.catalyst.TableIdentifier
val tableName = "table"
val dbName = "dbname"
val oldTable: CatalogTable =
spark.sessionState.catalog.getTableMetadata(TableIdentifier(tableName,
Some(dbName)))
val alteredTable: CatalogTable = oldTable.copy(tableType =
CatalogTableType.EXTERNAL)
spark.sessionState.catalog.alterTable(alteredTable)

73D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://docs.databricks.com/sql/language-manual/sql-ref-syntax-aux-sync.html

74D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Before upgrading the views, make sure that you’ve upgraded all of the referenced tables and views to Unity

Catalog. After you upgrade all of a view’s references to the same Unity Catalog metastore, you can re-create a

new view that references the new tables.

If dynamic views are present, they should be modified to use the is_account_group_member function.

Additionally, use the row filters and column masking to enable fine-grained access at the row and

column levels. Functions also need to be re-created in the corresponding catalog - schema.

We recommend you use Databricks Labs UCX to manage the table, view and function upgrades seamlessly,

instead of developing custom scripts.

UPGRADING CLUSTERS TO UNIT Y CATALOG

Prerequisites
Before initiating the upgrade, ensure that Unity Catalog is enabled for your account. A metastore should be

created and assigned to the workspace, and catalogs/databases/tables should be created with proper access

control lists (ACLs). The cluster should operate in either shared access mode or single user access mode

to leverage Unity Catalog. Shared access mode is recommended for most scenarios unless your workload

requires certain functionalities supported by this mode. For production workloads, it’s recommended to

restrict the access modes using cluster policies to ensure consistent usage of Unity Catalog–enabled clusters.

Upgrade scenarios
Consider the following scenarios when upgrading:

	■ Clusters running Databricks Runtime (DBR) earlier than 11.1: In this case, you must dismantle the

existing cluster and rebuild it. Upgrading clusters to use Unity Catalog isn’t possible in this scenario as

Unity Catalog requires DBR 11.1 or later. Upgrade the DBR to version 11.1 or later, with the latest long-term

support (LTS) version being highly recommended.

	■ Clusters running DBR 11.1 and later: To upgrade from any of the legacy cluster modes to the Unity

Catalog–leveraged security mode, edit your cluster and change the access mode to either single user or

shared from the access mode drop-down menu in the cluster UI.

https://docs.databricks.com/en/data-governance/unity-catalog/row-and-column-filters.html
https://github.com/databrickslabs/ucx/blob/main/README.md

Interactive and automated clusters
For an interactive cluster, switch to Unity Catalog mode by clicking the Edit button on the cluster page and

changing the access mode to either single user or shared.

For job clusters, the prerequisites are the same as for interactive clusters. Navigate to the job details screen

and click Configure under Compute.

To minimize effort, change and fix/default the access mode in the compute policy and roll out the changes to

all existing clusters. Also, ensure that credential pass-through isn’t enabled in a cluster (either in Unity Catalog

or fixed in compute policies), as this would disable Unity Catalog access. To add a default catalog, use the

following configuration in the Spark settings of the cluster: spark.databricks.sql.initial.catalog.name

name_of_catalog.

Limitations
Note that Databricks Runtime for Machine Learning and Spark machine learning library (MLlib) aren’t supported

in shared access mode. Spark-submit jobs are also not supported in shared access mode. Single-node cluster

isn’t supported in the SHARED mode.

https://docs.databricks.com/en/compute/access-mode-limitations.html
https://docs.databricks.com/en/compute/access-mode-limitations.html

76D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Premigration assessment
Before migrating, collect information about the existing mount points, the underlying storage location

and the impacted code assets. This can be accomplished via dbutils.fs.mounts() or by running the

UCX assessment.

Data migration
Data stored in the DBFS root location should be copied to an external location for Unity Catalog to access it.

For DBFS-mounted cloud paths, the data doesn’t need to be moved. Depending on the type of data, there are

two upgrade scenarios:

	■ Tabular data: To read tabular data from paths to the object storage, use external tables. Follow the

steps mentioned in the “Upgrading tables” section of this chapter.

	■ Unstructured data: To read unstructured data in the object storage, define external volumes over the

cloud path that contains the data. Unity Catalog volumes come under a schema, just like a table, hence

Unity Catalog volume location is a subfolder of the external location pointed to by its parent schema

or catalog. You can reuse the same external location to create multiple volumes as subfolders. You can

manage permissions for each volume separately, even though they share the same parent location.

Migration execution
During the migration, once you’ve defined volumes, you can access the same cloud storage location in cloud

storage via mount point and Unity Catalog (external volume). If you upload a file via Unity Catalog Volumes, the

file will be available via the mount point and vice versa. This allows you to migrate the mount points with zero

downtime for your application.

Code adjustment and cleanup
Once your volume is in place, update your code to use the volume instead of the mount point. If there are

multiple notebooks and files in your workspace, consider scanning all of them and replacing the respective

paths. As you eliminate the need for each mount point, clean up permissions and storage credentials.

Best practices
Remember, mount points have workspace-level scope, while Unity Catalog volumes have metastore-level

scope. It’s always good practice to use parameters in your code. This is even more critical for Unity Catalog

volume paths.

https://docs.databricks.com/en/sql/language-manual/sql-ref-external-tables.html

UPGRADING BATCH AND STREAMING WORKLOADS

To upgrade both batch and streaming workloads, make sure all of the upgrades mentioned in the previous

section that are relevant to the job are already in place, including table upgrades, cluster upgrades, mount

points and DBFS upgrades. The code should be adjusted to refer to the volumes created and it should read

and write to Unity Catalog tables. To avoid too many changes in the code, set the default catalog at the

cluster level, so that you can continue using a two-level namespace instead of the three-level namespace. If

this isn’t a viable option, you can also consider adding “USE <catalog-name>” at the top of the job, so that rest

of the queries in the job don’t change.

When upgrading a streaming workload, stop the streaming job to assure a seamless transition. For streaming

workloads, the checkpoint locations in the code should be modified to refer to the corresponding external

location or volume path. If the checkpoints are stored in a DBFS root location, they should be copied over to an

external location/volume. Since the checkpoint location points to the same location or contains the previous

checkpoints, the job will resume from the previous point upon restart.

Any use of global init scripts should also be replaced with cluster-scoped init scripts.

UPGRADING DLT PIPELINES

To begin the migration process, ensure that your DLT job cluster runs on Databricks Runtime 13.1 or later and

follow these steps.

1.	 Temporarily halt the DLT job you intend to upgrade to prevent new data ingestion during the migration.

2.	Create a new Unity Catalog table to store data previously handled by your DLT pipeline as mentioned in

the table migration section.

3.	When migrating the table, ensure that there is schema compatibility with the existing DLT table.

4.	Once the new table is in place, modify the DLT job definition to use it as the data sink, replacing

references to the old DLT table.

5.	Restart the DLT job, which will now write data to the Unity Catalog table.

77D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://docs.databricks.com/en/data-governance/unity-catalog/create-catalogs.html#manage-the-default-catalog
https://docs.databricks.com/en/data-governance/unity-catalog/create-catalogs.html#manage-the-default-catalog
https://docs.databricks.com/en/init-scripts/cluster-scoped.html

UPGRADING WAREHOUSES

Once your workspace is attached to the metastore, any new warehouse created will be enabled for Unity

Catalog by default. For existing warehouses, edit the configuration, and enable the Unity Catalog toggle under

“Advanced options” as shown below:

If the majority of your queries in a workspace point to the same catalog, then you can make that catalog the

default catalog for the workspace, and hence for the warehouses. You can change the default catalog using

the admin console as described here.

78D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://docs.databricks.com/en/data-governance/unity-catalog/create-catalogs.html#change-the-default-catalog

UPGRADING BI AND VISUALIZATION TOOLS

The majority of BI and visualization tools interact with Databricks by connecting to SQL warehouses, so once

the warehouses are Unity Catalog–enabled, they’ll be able to communicate with Unity Catalog. Connection

strings used to connect to the SQL warehouses by the external tools should be modified to include the catalog

name if the workspace default catalog doesn’t suffice.

Upgrading machine learning models
Models that are registered in the workspace model registry can be upgraded to the Databricks-hosted version

of MLflow Model Registry in Unity Catalog.

To create new registered models, you need the CREATE_MODEL privilege on a schema, in addition to the USE

SCHEMA and USE CATALOG privileges on the schema and its enclosing catalog. CREATE_MODEL is a new schema-

level privilege that you can grant using the Catalog Explorer UI or the SQL GRANT command, as shown below.

To upgrade existing ML workflows to Unity Catalog, you can register models under a schema in Unity Catalog.

By default, the MLflow Python client creates models in the Databricks workspace model registry. To use Unity

Catalog, configure the MLflow client to set the model registry as databricks-uc, which points to the Unity

Catalog registry, and use the three-level namespace when registering the model.

Individual models can be upgraded to Unity Catalog by using the sample Python notebook, which uses the

model registry APIs to upgrade existing models in the workspace Model Registry to Unity Catalog.

1 GRANT CREATE_MODEL ON SCHEMA <schema-name> TO <principal>

1
2
3
4

import mlflow
mlflow.set_registry_uri("databricks-uc")
...
mlflow.register_model(model_uri, "catalog.schema.model_name")

79D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://docs.databricks.com/en/_extras/notebooks/source/mlflow/upgrade-models-to-unity-catalog.html

UPGRADING FEATURE TABLES

Feature tables upgrade from workspace to Unity Catalog requires the underlying table to be upgraded to Unity

Catalog as a requirement. Follow instructions in the “Upgrading tables” section of this chapter to make sure

that the table is available prior to migrating the feature tables. Once the underlying tables are available in Unity

Catalog, use upgrade_workspace_table to upgrade the workspace feature table metadata to Unity Catalog,

as illustrated in the following code.

The following metadata is upgraded to Unity Catalog:

	■ Primary keys

	■ Time series columns

	■ Table and column comments (descriptions)

	■ Table and column tags

	■ Notebook and job lineage

1

2

3
4
5
6
7
8

%pip install databricks-feature-engineering --upgrade

dbutils.library.restartPython()

from databricks.feature_engineering import UpgradeClient
upgrade_client = UpgradeClient()
upgrade_client.upgrade_workspace_table(
 source_workspace_table='recommender_system.customer_features',
 target_uc_table='ml.recommender_system.customer_features'
)

80D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Upgrade challenges and limitations
Even though Unity Catalog is a significant deviation from the way the Hive metastore is governed, the upgrade

process is designed to be streamlined, with minimal impact on end users and their day-to-day operations

interacting with the data. The primary challenges of upgrading to Unity Catalog include the time investment

required for the upgrade process and the need to maintain both the Hive metastore and Unity Catalog during

the upgrade to minimize downtime and impact on end users and downstream data consumers.

Certain limitations exist in Unity Catalog–enabled compute that didn’t exist in non–Unity Catalog compute due

to the strong isolation for processes running in the Unity Catalog compute enabled by Lakeguard. User and

process isolation is enforced by Lakeguard on shared and single-user clusters supporting fine-grained access

controls including row-level and column-level filters.

Some of these limitations are described in the following sections.

SINGLE USER ACCESS MODE LIMITATIONS ON UNIT Y CATALOG

Single user access mode on Unity Catalog has the following limitations.

Fine-grained access control limitations for Unity Catalog single user access mode
on DBR 15.3 and earlier

	■ Dynamic views aren’t supported

	■ To read from a view, you must have SELECT on all referenced tables and views

	■ You can’t access a table that has a row filter or column mask

Compute with single user access mode on Databricks Runtime 15.4 LTS or later (Public Preview)
Databricks Runtime 15.4 LTS and later support fine-grained access control on single-user compute. To take

advantage of the data filtering provided in Databricks Runtime 15.4 LTS and later, you must also verify that

your workspace is enabled for serverless compute, because the data filtering functionality that supports fine-

grained access controls runs on serverless compute. You might therefore be charged for serverless compute

resources when you use single-user compute to run data filtering operations. See Fine-grained access control

on single-user compute.

81D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://docs.databricks.com/en/compute/access-mode-limitations.html
https://www.databricks.com/blog/unity-catalog-lakeguard-industry-first-and-only-data-governance-multi-user-apachetm-spark
https://docs.databricks.com/en/compute/single-user-fgac.html
https://docs.databricks.com/en/compute/single-user-fgac.html

Streaming limitations for Unity Catalog single user access mode
	■ Asynchronous checkpointing isn’t supported in Databricks Runtime 11.3 LTS and earlier

	■ StreamingQueryListener requires Databricks Runtime 15.1 or later to use credentials or interact with

objects managed by Unity Catalog on single user compute

SHARED ACCESS MODE LIMITATIONS ON UNIT Y CATALOG

Shared access mode on Unity Catalog has the following limitations.

	■ Databricks Runtime ML and Spark Machine Learning Library (MLlib) aren’t supported

	■ Spark-submit jobs aren’t supported

	■ In Databricks Runtime 13.3 and later, individual rows must not exceed 128MB

	■ PySpark UDFs can’t access Git folders, workspace files or volumes to import modules in Databricks

Runtime 14.2 and earlier

	■ DBFS root and mounts don’t support FUSE

	■ When you use shared access mode with credential pass-through, Unity Catalog features are disabled

	■ Custom containers aren’t supported

Language support for Unity Catalog shared access mode
	■ R isn’t supported

	■ Scala is supported in Databricks Runtime 13.3 and later

	■ In Databricks Runtime 15.4 LTS and later, all Java or Scala libraries (JAR files) bundled with Databricks

Runtime are available on compute in Unity Catalog access modes

	■ For Databricks Runtime 15.3 or earlier on compute that uses shared access mode, set the Spark

config spark.databricks.scala.kernel.fullClasspath.enabled to true

82D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Spark API limitations for Unity Catalog shared access mode
	■ RDD APIs aren’t supported

	■ DBUtils and other clients that directly read the data from cloud storage are only supported when you

use an external location to access the storage location. See Create an external location to connect

cloud storage to Databricks.

	■ Spark Context (sc), spark.sparkContext and sqlContext aren’t supported for Scala in any Databricks

Runtime and aren’t supported for Python in Databricks Runtime 14.0 and later

	■ Databricks recommends using the spark variable to interact with the SparkSession instance

	■ The following sc functions are also not supported: emptyRDD, range, init_batched_serializer,

parallelize, pickleFile, textFile, wholeTextFiles, binaryFiles, binaryRecords, sequenceFile,

newAPIHadoopFile, newAPIHadoopRDD, hadoopFile, hadoopRDD, union, runJob, setSystemProperty,

uiWebUrl, stop, setJobGroup, setLocalProperty, getConf

	■ The following Scala Dataset API operations require Databricks Runtime 15.4 LTS or later: map,

mapPartitions, foreachPartition, flatMap, reduce and filter

UDF limitations for Unity Catalog shared access mode
User-defined functions (UDFs) have the following limitations with shared access mode:

	■ Hive UDFs aren’t supported

	■ applyInPandas and mapInPandas require Databricks Runtime 14.3 or later

	■ Scala scalar UDFs require Databricks Runtime 14.2 or later. Other Scala UDFs and UDAFs

aren’t supported.

	■ In Databricks Runtime 14.2 and earlier, using a custom version of grpc, pyarrow or protobuf in a PySpark

UDF through notebook-scoped or cluster-scoped libraries isn’t supported because the installed version

is always preferred. To find the version of installed libraries, see the System Environment section of the

specific Databricks Runtime version release notes.

	■ Python scalar UDFs and Pandas UDFs require Databricks Runtime 13.3 LTS or later. Other Python UDFs,

including UDAFs, UDTFs and Pandas on Spark aren’t supported.

For a complete list of limitations, refer to the documentation.

83D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://docs.databricks.com/en/connect/unity-catalog/external-locations.html
https://docs.databricks.com/en/connect/unity-catalog/external-locations.html
https://docs.databricks.com/en/release-notes/runtime/15.4lts.html#system-environment
https://docs.databricks.com/en/release-notes/runtime/15.4lts.html#system-environment
https://docs.databricks.com/en/compute/access-mode-limitations.html

Rollback strategy
The Unity Catalog upgrade is a significant change to the Databricks Platform, requiring modifications to code,

operations and infrastructure. It’s important to have a rollback strategy in case an issue arises that prevents

the upgrade from proceeding.

	■ We recommend that you continue hydrating the Hive metastore during the Unity Catalog upgrade to

ensure a fallback option is available in case of any issues

	■ A phased approach is recommended for the Unity Catalog upgrade instead of a big bang approach.

This gradual implementation can help minimize risks and disruptions.

	■ All the code changes should only come via a code repository and CI/CD process

	■ Make use of Databricks Terraform Provider to automate the Unity Catalog deployment process

84D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Here at Databricks, we’re excited to announce the

open sourcing of Unity Catalog, the industry’s first

open source catalog for data and AI governance

across clouds, data formats and data platforms.

The project is now available on GitHub, marking the

first step in our journey to bring the Unity Catalog

vision into open source. Unity Catalog is hosted by

LF AI & Data, a part of the Linux Foundation that

fosters open source innovation in AI and data.

Open Data
Accessibility

85D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

Why open source?
In the past two years since Unity Catalog’s General Availability we’ve seen widespread adoption. Organizations

have consistently expressed the need for an open foundation for their data and AI applications, not just for

today but for the innovations of the coming decades.

Unfortunately, most data platforms today function as walled gardens. Many cloud data warehouses use “native

tables” that aren’t in open formats, while other platforms require customers to pay for always-on compute

even when accessing data from external engines, de facto doubling the computation costs. Additionally, many

platforms limit the data formats and clients they support.

This leads to siloed data and fragmented governance across assets. Without a multimodal interface for tabular

data and AI assets, organizations are forced to piece together multiple disjointed solutions. Databricks has

already taken a strong stance in the industry by being the only major platform where all tables are in open

formats by default and by opening up Delta tables to Apache Iceberg™ clients with Delta Lake UniForm last

year. By open sourcing Unity Catalog, we’re providing organizations with an open foundation for their current

and future workloads.

INTEROPERABLE, OPEN, UNIFIED

Among all the characteristics of Unity Catalog, the three most important ones you need to remember are:

interoperability, openness and unified governance.

Unity Catalog is interoperable across any format and any engine. It supports Delta Lake, Apache Iceberg via

UniForm, Parquet, CSV, JSON and many other formats. It also implements the Iceberg REST Catalog API to

interoperate with a broad ecosystem of engines.

Unity Catalog is now also open source under the Apache 2.0 license, including an OpenAPI specification, with

both server and clients. Customers need to be flexible and must be able to choose which engine to use, and

open standards maximize this by ensuring extensive interoperability across engines, tools and platforms.

Unity Catalog is a universal catalog that’s able to govern and secure any type of data, be it structured Delta

tables, unstructured folders of images and documents or GenAI models and tools with a unified solution. It’s

able to secure access with strong authentication, secure credential vending and asset-level access control.

86D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

ECOSYSTEM

Unity Catalog open source is supported by a vibrant community comprising all three main cloud providers,

data and AI platforms and many software vendors already. Choosing Unity Catalog today makes your company

future-ready.

JOIN THE COMMUNIT Y TODAY

Join the Unity Catalog open source community on LinkedIn, GitHub or Slack.

87D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://www.linkedin.com/company/unitycatalog/
https://github.com/unitycatalog/unitycatalog
https://go.unitycatalog.io/slack

88D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

The Databricks Data Intelligence Platform is a versatile, cloud-native solution that operates seamlessly across

AWS, Azure and Google Cloud Platform (GCP). This platform empowers organizations with the flexibility

to choose their preferred cloud provider or adopt a multicloud strategy, enabling efficient execution and

integration of workloads across different environments. However, as organizations scale their use of data,

effective governance becomes increasingly critical, particularly in the face of challenges like decentralized

responsibilities and evolving roles such as the chief data officer (CDO).

To address these governance challenges, Databricks introduces Unity Catalog, a unified governance

framework that centralizes the management of structured and unstructured data, AI models and data sharing

across all cloud environments. Unity Catalog simplifies governance by providing a consistent experience

across clouds, making it easier for organizations to implement and enforce data governance policies at scale.

Unity Catalog’s cross-cloud data sharing capabilities are further enhanced by Delta Sharing, an open protocol

for secure data sharing across platforms, clouds and regions. Delta Sharing allows organizations to share

live data with external partners, customers and vendors, regardless of their infrastructure. This open source

protocol supports various data formats and is designed to integrate seamlessly with Unity Catalog, enabling

secure, scalable and governed data sharing.

Delta Sharing, a key feature of Unity Catalog, revolutionizes how data is shared across organizations and

platforms. It provides a secure, flexible and open method for sharing live data with any recipient, regardless of

their infrastructure or cloud provider. Delta Sharing is the first open source data sharing protocol designed to

facilitate collaboration across different platforms and ecosystems.

In addition to its robust governance and data sharing capabilities, Unity Catalog is now available as an

open source project, hosted by the Linux Foundation. By open sourcing Unity Catalog, Databricks provides

organizations with an open foundation for data and AI governance that’s interoperable across clouds, data

formats and platforms.

Summary

The Databricks Data Intelligence Platform, with the integration of Unity Catalog, provides a powerful and

unified solution for managing data governance, security and sharing across multicloud environments. Unity

Catalog’s ability to centralize governance, abstract cloud-specific complexities and facilitate secure data

https://youtube.com/playlist?list=PLTPXxbhUt-YULm2h1Qjpc6xH-C4EGMC1Y&si=GMwudFiK0nucIkAJ
https://docs.databricks.com/data-governance/unity-catalog/index.html
https://learn.microsoft.com/en-us/azure/databricks/data-governance/unity-catalog/
https://docs.gcp.databricks.com/data-governance/unity-catalog/index.html
https://www.youtube.com/watch?v=lZbmBAxa3O4&list=PLTPXxbhUt-YXh57uL3QUQiKLwTf39IoT1&index=17
https://www.youtube.com/watch?v=lZbmBAxa3O4&list=PLTPXxbhUt-YXh57uL3QUQiKLwTf39IoT1&index=17
https://youtu.be/vnznr18oGfI
https://www.youtube.com/watch?v=iMGG1Ng7sy4

About the
Authors

Pearl Ubaru is a Senior Technical Product Marketing Engineer at Databricks with skills in data sharing, data

warehousing, data analytics and BI, and data governance. You can reach out to Pearl on LinkedIn.

Fabian Lanz is a Senior Solutions Architect at Databricks with a primary focus on AI and governance. He works

with customers to develop secure and scalable end-to-end data and AI solutions. You can reach out to Fabian

on LinkedIn.

Karthik Subbarao is a Specialist Solutions Architect at Databricks, focusing on platform, security and

governance topics. He helps organizations design and implement secure, scalable and well-governed data

platforms. You can reach Karthik on LinkedIn.

Kiran Sreekumar is a Specialist Solutions Architect at Databricks, focusing on data governance. He works with

customers to implement their enterprise data governance strategies. You can reach Kiran on LinkedIn.

Mattia Zeni is a Senior Solutions Architect at Databricks, where he collaborates with strategic customers to

maximize the value of their data using open data platforms. His primary areas of focus are data governance

and managed serverless compute. Connect with Mattia on LinkedIn.

Jince James is a Senior Resident Solutions Architect at Databricks, focusing on data engineering, governance

and data strategy. He helps organizations navigate and solve complex data and AI challenges. You can connect

with Jince on LinkedIn.

Ivan Trusov is a Senior Specialist Solutions Architect on the Databricks EMEA team. His focus areas are

governance, platform automation and security. He enables data teams to build efficient and secure data

platforms. You can reach out to Ivan on LinkedIn.

Saurabh Shukla is a Senior Specialist Solutions Architect at Databricks with deep expertise in big data

engineering, real-time analytics, cloud computing, data architecture and advanced software development.

Saurabh crafts scalable data solutions and leverages advanced technology to solve complex challenges. You

can reach out to Saurabh on LinkedIn.

Amit Kara, Director of Technical Marketing at Databricks, is a seasoned expert in data management, combining

technical expertise with strategic vision to help organizations realize the full potential of their data. Connect

with Amit on LinkedIn.

90D A T A G O V E R N A N C E A R C H I T E C T U R E P A T T E R N S F O R D A T A A R C H I T E C T S

https://www.linkedin.com/in/pearl-ubaru/
https://www.linkedin.com/in/fabianlanz?utm_source=share&utm_campaign=share_via&utm_content=profile&utm_medium=ios_app
https://www.linkedin.com/in/karthikeyasubbarao/
https://www.linkedin.com/in/kiransreekumar/
https://www.linkedin.com/in/mzeni/
https://www.linkedin.com/in/jincejames
https://www.linkedin.com/in/ivan-trusov/
https://www.linkedin.com/in/saurabhs12/
https://www.linkedin.com/in/karadata/

© Databricks 2024. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation. Privacy Policy | Terms of Use

About Databricks

Databricks is the data and AI company. More than 10,000 organizations worldwide —

including Block, Comcast, Condé Nast, Rivian, Shell and over 60% of the Fortune 500 —

rely on the Databricks Data Intelligence Platform to take control of their data and put it to

work with AI. Databricks is headquartered in San Francisco, with offices around the globe,

and was founded by the original creators of Lakehouse, Apache Spark™, Delta Lake and

MLflow. To learn more, follow Databricks on LinkedIn, X and Facebook.

TRY DATABRICKS FREE

http://www.apache.org/
https://databricks.com/privacy-policy
https://databricks.com/terms-of-use
https://www.linkedin.com/company/databricks
https://twitter.com/databricks
https://www.facebook.com/databricksinc
https://www.databricks.com/try-databricks?itm_data=machinelearning-herocta-trial#account

